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Abstract

The goal of this project was to develop and implement algorithms to demonstrate

real-time positioning of a UAV using a monocular camera combined with previously

collected orthorectified imagery. Unlike previous tests, this project did not utilize

a full inertial navigation system (INS) for attitude, but instead had to rely on the

attitude obtained by inexpensive commercial off-the-shelf (COTS) autopilots. The

system consisted of primarily COTS components and open-source software, and was

flown over Camp Atterbury, IN for a sequence of flight tests in Fall 2015. The system

obtained valid solutions over much of the flight path, identifying features in the flight

image, matching those features with a database of features, and then solving both the

6DOF solution, and an attitude-aided 3DOF solution. The tests demonstrated that

such attitude aiding is beneficial, since the horizontal DRMS of the 6DOF solution

was 59m, whereas the 3DOF solution DRMS was 15m. Post processing was done

to improve the algorithm to correct for system errors, obtaining a 3DOF solution

DRMS of 8.22 meters. Overall, this project increased our understanding of the capa-

bilities and limitations of real-time vision-aided navigation, and demonstrated that

such navigation is possible on a relatively small platform with limited computational

power.
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REAL-TIME IMPLEMENTATION OF VISION-AIDED MONOCULAR

NAVIGATION FOR SMALL FIXED-WING UNMANNED AERIAL SYSTEMS

I. Problem Statement

In recent decades, small unmanned aerial systems have become more common

across the globe. These systems are used by the military, commercial, and even the

hobbyist communities, but all systems contain similar components and perform closely

tied basic operations. For autonomous systems, a navigation solution is necessary for

localization to determine the vehicles position and orientation. For the vast majority

of systems, even those used for military purposes, the primary means of navigation

is GPS. This is usually seen as the cheapest, easiest, and most effective solution, but

it comes with some disadvantages as well.

1.1 Background

GPS was made available to the public in 1983 in response to the tragedy of Korean

Air Lines flight 007, which could have been avoided with a more reliable navigation

solution [10]. Since then the use of global navigation satellite systems (GNSS) has

spread to almost every aspect of life. Farming, banking, vehicle navigation, even

cellular phone navigation and timing have all become dependent on the GPS sys-

tem. Even for military purposes, GPS is seen as a primary means of navigation for

autonomous operations. For military operations, the primary issues with the GPS

signal are that the acquisition signal is available to the public and, as such, is easily

accessible by inexpensive means and easily jammed or blocked. Though loss of GPS

is not as large of an issue for piloting manned aircraft, as the pilot can correct for
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poor or false navigation solutions when encountered, it is catastrophic for autonomous

unmanned vehicles. One potential solution to these problems is that of vision-aided

navigation in its various forms.

GPS vulnerability has been noticed by the Department of Defense, and the USAF

in particular. In the Air Force Future Operating Concept for the view of the Air

Force in 2035, a primary desire is for “New concepts and capabilities to counter

the increasing technology and proliferation of anti-access and area denial threats, to

include multi-domain approaches and systems that can be rapidly modified when

adversaries adapt their defenses.[11]”

1.2 Definition of Terms

According to Beard and McLain, small unmanned aerial systems (SUAS) or small

unmanned aerial vehicles (SUAV) are used to describe “the class of fixed-wing aircraft

with a wing span between 5 and 10 feet. Small unmanned aircraft are usually gas

powered and typically require a runway for take-off and landing....”[12]. There are

many interpretations on how small or large a SUAS can be, but the common threshold

is having a wingspan under 15 feet. The aircraft used in this research, though it is

slightly larger than Beard and McLain’s definition of a SUAV, is still considered a

SUAS by many other sources. The DoD Unmanned Systems Integrated Roadmap

provides a slightly different definition of Small UAS, as demonstrated in Figure 1.

According to this definition, the Telemaster would be a small UAS, in particular a

Group 2 small tactical SUAS [1].
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Figure 1. An illustration defining the UAS categories according to the DoD UAS
Roadmap [1].

Navigation Warfare (NavWar) is used to define the realm of operations that will

utilize the results of this research. This style of warfare refers to either the passive or

active denial of specific navigation means in a defined environment, such as GPS jam-

ming, and the alternative way to navigate in such an environment. DoD Instruction

4650.08 describes the integration of NavWar to acquire and secure position, naviga-

tion, and timing (PNT) information in the battlefield. The international incidents

listed in the Background section are clear examples of how NavWar was used to in-

tercept military aircraft and, as such, is a constant problem for current and future

autonomous vehicles.

Vision navigation, or VisNav, is used to describe the use of computer vision to
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either navigate an environment by images only or to aid other navigation systems. The

VisNav system proposed in this research is a vision-aided navigation system, meaning

that the computer vision is only a part contributing to the whole of the navigation

solution. This field has been expanding greatly in the last decade in conjunction with

the computation power available and the quality of digital imaging— making this

solution more suitable for accurate navigation.

Many VisNav systems utilize some form of imagery as a reference. The images

used are typically orthophotos or orthoimages: images captured from specified heights

and then geometrically corrected so that the scale is uniform. Such an image that

has been geometrically corrected is said to be “orthorectified”.

Of the many methods that can be used for VisNav, the primary method proposed

for use is that of perspective-n-point (PnP). This is a common computer vision tech-

nique to determine the pose of the camera from known 3D points and their projections

in the image plane[13]. The advantages and disadvantages of this approach will be

discussed later in this thesis.

Real-time is used to describe a process or function that can be achieved at the

moment the data is gathered, as opposed to the post-processing of data, which must

be done after all or large portions of the data has been gathered. In imaging and

computer science, real-time is often used to describe the rate at which frames are

acquired, typically 30 frames per second (fps). For this research, to avoid confusion,

30fps is not the desired definition of real-time, and in fact the frame rate is only

a portion of the measurement rate. For this system, pose calculation will be con-

sidered real-time if a solution can be calculated while the vehicle is still performing

autonomous flight over the target area. The desired measurement rate, the rate from

which the command is given for image acquisition to the final calculation is presented

or saved to the on-board computer, should be as close to 5Hz as possible in order to
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integrate with the chosen autopilot for the SUAS. The specific rate desired for this

research was 1Hz, similar to the rate used in [7].

In the interests of making this solution easily attainable for furthering future re-

search, the SUAS was determined to primarily utilize commercial off the shelf (COTS)

equipment and open source software (OSS) in the creation of the VisNav solution. All

individual hardware components are available either through common re-sellers, or

from the Internet. Open source software and scripts are available for free online and

are developed and improved by a community of programmers. The VisNav solution

presented in this thesis uses these to build a working system, leveraging the open-

source functions for faster development. The building blocks of the system are all

COTS/OSS, and the final solution framework can be recreated from OSS and COTS

components.

1.3 Problem Statement

For any autonomous vehicle, a form of navigation is required in order for the

system to accurately determine its pose at a given moment. The primary down-

falls of the GPS navigation solution, as discussed above, are urban canyons, indoor

environments, and accidental or purposeful interference. Accidental or purposeful

interference can include active jamming or spoofing of the GPS signals, and both fall

under the NavWar domain in general. Extensive research has been explored on this

subject matter over the last several decades, but an ideal final solution has not yet

been discovered. This research aims to solve for a fully implemented VisNav solution

using COTS equipment for autonomous, real-time navigation of a SUAS. If this is

achieved, what improvements can be made to the system to improve performance?
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1.4 Research Objectives

The primary objective of this research, as stated above, is the demonstration of a

real-time vision-aided navigation system on-board an autonomous SUAV. In order to

achieve this objective, many of the individual parts of the system had to be completed

to a sufficient degree first. The algorithm itself had to be either developed or modified

from existing PnP solutions to provide accurate results for the given environment

and airframe. The integration of the algorithm with the modified airframe is the

primary objective for successful implementation, as the modifications to the airframe

are what allow the autonomous vision navigation in a real-time scheme. The intended

accuracy of the navigation solution is to be that of near-GPS accuracy to validate it

as a reasonable, alternative solution in the instance of GPS signal loss or disruption.

The current civilian GPS achieves 1-10 meters accuracy by single point positioning,

so a solution of approximately 10 meters of error or better is preferred for the final

solution [10].

1.5 Research Focus

The overall foci for this research are centered around the final SUAS design and

its ability to perform real-time implementation of the PnP solution. The first of

these is a real-time solution, meaning the processing capabilities must be of sufficient

level to perform image analysis and advanced calculations while still in autonomous

flight. The real-time solution is superior to post-processing, which must be done

after the flight is completed and all data and images gathered. Post-processing would

not provide a solution at the time of flight and does not meet the requirements for

implementation with the system, but will be useful in developing and improving the

real-time solution.

The second focus is the algorithms used in generating the navigation solution.
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The algorithms chosen have been proven to provide accurate results on past projects

and as such will be used for implementation of the full system. The majority of these

algortithms were developed by Venabale, utilizing an accumulation of open-source

software and customized frameworks to calculate a navigation solution based on real-

time imagery and a feature database. Though the base of these algorithms use the

open source computer vision library (OpenCV) and other OSS packages, these were

only leveraged to produce an effective framework for the VisNav algorithms.

The last focus is the implementation of the full system. Implementation was per-

formed on a real SAUS, which integrated the algorithms with the necessary compo-

nents of the airframe in order to achieve the real-time solution for autonomous flight.

Any errors from the individual components, including the algorithms, will be propa-

gated through the implementation and expressed clearly in the final solution errors.

These errors are calculated by determining the difference of the aircraft’s trajectory

compared to its truth trajectory. The integration of the individual components is

necessary for the implementation of the full system, but the algorithms necessary to

provide the navigation solution from the images is the primary focus and concern, as

small errors in the solution can result in larger errors during implementation. The

details of the algorithm development will be covered in Chapter 3, as well as how the

known risks were mitigated with the solution.

The scope of this research is focused to demonstrate of the capabilities of the

SUAS, primarily on the integration of components to obtain the VisNav solution.

Extensive studies were not conducted on the individual components, as they were

proven to perform similar operations in previous experiments [14]. Most of the in-

dividual components were chosen based on availability, and only a small amount of

analysis was done for the primary performance characteristics of each component to

verify the capabilities to perform as desired.
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1.6 Methodology

The goal of this research is to provide a physical implementation of a working

system, not just the theory or a simulation of results. The methodology of creating

and implementing such a system will be covered in extensive detail in Chapter 3. The

methodology of the experiment is broken down into three main categories: Database

Development, PnP Algorithm, and Integration and Implementation. The database

development is completed pre-processing, meaning that it is done before any flights

are conducted. The database begins with reference satellite imagery, ortho-rectified

to create a high-resolution orthophoto of the area of interest. The reference imagery

is then reduced to feature keypoints by use of the Scale Invariant Feature Transform

(SIFT) algorithm [5]. SIFT will be covered in more detail in Chapter 2. These

keypoints are then registered in a database for use in the PnP algorithm.

The algorithms and image analysis are performed by an on-board computer. The

SUAV will carry an Intel Next Unit of Computing (NUC) during the flights that

will perform all of the computations necessary to provide an accurate solution. The

algorithm itself was modified from several existing PnP solutions to yield a fast and

accurate solution to the real-time navigation problem.

The implementation of the system, aside from any analysis and improvement of the

performance, is the final step in the experiment. The system is composed primarily

of COTS equipment and algorithms generated from open-source software, making it

easier for replicating the research, as well as modifying the solution to further the

field of study after this experiment. The full system will consist of a UAV using

computer vision, an on-board machine vision camera, on-board image processor, and

the pre-generated database of keypoints to autonomously navigate an area of interest.

There are other components to the test system, such as a ground station to monitor

the progress of the vehicle and NUC, but these ground station components are not
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required for the system to function autonomously. More detail will be covered in

Chapter 3, with the steps, results, and specifications for these three processes.

1.7 Assumptions

Though the system is designed to work in GPS-denied environments, for testing

and safety purposes, the system Autopilot utilized GPS for flight. Autonomous take-

off and landing, even without the use of GPS, have already been accomplished, so

they are not the primary focus of the research in this thesis [15]. Since this capability

has already been demonstrated, it will be assumed that for a full system in the field,

similar methods would be used. While using such equipment has many advantages,

such as the ability to modify as desired, it also carries with it many disadvantages,

which a proprietary system would not have. Most of these disadvantages manifest

in the integration of the COTS and OSS components and scripts. For the VisNav

pose calculation, the origin of the camera frame is set to be the same as the UAV

body frame. In truth there is a translation between these frames, but this was seen

as negligible for the overall pose calculation.

Another primary assumption is that the experiments, including all implementation

flights, will be conducted in a controlled setting, such as laboratory bench tests or

flights at a controlled range and airstrip. No testing will be conducted in an actual

GPS-denied environment, and no GPS jamming/spoofing will be implemented. The

flights will be conducted in a pre-defined area of interest, limiting the scope necessary

for database development.

1.8 Implications

Developing a system that does not rely on GPS will allow for safer air travel

for all users currently dependent on the system. VisNav is also important in the
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NavWar realm as it removes an easily accessible vulnerability. A working alternative

navigation solution implies that aircraft using this solution will be harder to divert

using NavWar and more likely to achieve mission objectives. Since VisNav is a passive

system, it is not vulnerable to electronic warfare techniques. With a less vulnerable

ISR system, more actionable intelligence can be obtained in the field, regardless of

GPS denial or electronic warfare counter-operations. This system would increase the

capabilities of all UAS, establishing Position, Navigation, and Timing (PNT) and

maintaining operational use for PNT information-dependent systems as compliant

with DoDI4650.08 [16].

Over recent decades, radio controlled aircraft have grown more common, leading

to an increase in the technical maturity of these systems. So much so that the

technical gap between military grade SUAS and hobbyist/COTS UAVs is diminishing

rapidly [16]. This is especially true in autopilot designs, providing systems with

much more versatility and adaptability for performance due to their open source and

easily accessible autopilot software. In Ukraine, an air force entirely composed of

COTS/hobbyist was used to provide actionable ISR to forces for targeting artillery

and provide information on armor and troop movements [17]. This demonstrates

the ability for COTS/OSS UAVs to operate in military operations for NavWar, and

as such the technical maturity of these systems to be utilized effectively for VisNav

research as well. Details on the specific components utilized in this thesis will be

covered in Section 3.4.

1.9 Chapter Review

The research and objectives described above will be discussed in more adequate

detail in the following chapters, including a review of the current state of research

in this field, the methodology and equipment used in this particular research, and

10



the results obtained from the implementation test flights. Chapter 2 will primarily

address the current level of research previously conducted for VisNav solutions of

autonomous vehicles, as well as introduce some of the commonly used concepts that

will be implemented in this thesis. Chapter 3 will provide a detailed description of

how the experiments will be conducted, the data gathered, and the specific equipment

required to perform the flight tests for implementing the solution. Chapter 4 will

discuss the results obtained from the implementation flight tests and the analysis of

said results, and Chapter 5 will provide the conclusions gathered from the analysis,

as well as suggestions for furthering this specific research topic.
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II. Background

Over the recent decades, there have been many steps taken to solve the problem of

navigation in GPS-denied environments using computer vision. Many of these solu-

tions utilize monocular vision [18], whereas in other research a stereo camera system

was used to obtain navigation solutions [19]. The primary principles considered in

this chapter range from using feature detection methods in images, to optical flow

(OF), to visual simultaneous localization and mapping (VSLAM), to the more varied

methods of visual odometry (VO). Another method is the use of an a priori world

model, such as proposed in this research, to obtain a navigation solution using a

Perspective-n-Point (PnP) solution. All of these use computer vision techniques and

algorithms, but only the methods used in the research will be considered in depth.

For the majority of these navigation techniques, a filtering process must also be used,

and this too will be discussed briefly in this chapter.

In this chapter, the related methods of vision-based and vision-aided navigation

are reviewed, including a discussion of the relevant research in the field. In each

of these methods, a feature detection method is used to determine keypoints in the

image plane to be used for matching to keypoints of a different image. Various

methods of feature detection are discussed later in this chapter, as well as the basics

of the estimation techniques used in determining the pose of the vehicle at a given

time. The review of related works is used to build a framework for developing the

COTS SUAS autonomous vision-aided navigation system.

2.1 Estimation and Filtering

Navigation most commonly entails an estimation of the vehicle pose using mea-

surements. In most navigation schemes, there is uncertainty in the measurements of
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the sensors as well as the estimated states of the vehicle. In order to account for

these errors, a Bayesian filter is commonly used. The primary goal of this filter is to

minimize the error between the true pose of the UAV and the estimated pose. A sec-

ondary goal for filters in similar research is to minimize the computational intensity

of the filter to promote a real-time or near real-time implementation. The filter used

in most navigation schemes is the Kalman Filter (KF), which calculates the optimal

estimate in the minimum mean squared error (MMSE) sense. For a standard KF, it

is assumed that the dynamics model is linear and Gaussian in nature, and as such the

probability distribution can be completely modeled using the mean and covariance.

From the dynamics model, the discrete linear equation for the states is given in

Equation 1, and the measurement model is given by Equation 2.

ẋk = Φxk−1 + Buk + Gwk (1)

zk = Hxk + vk (2)

Qd = E[wkw
T
k ] (3)

R = E[vkv
T
k ] (4)

In the equations above, Φ represents the state transition matrix, B relates the

inputs uk to the states xk, and G relates the process noise wk with covariance Qd to

the states. For the measurement equation, Equation 2, H relates the measurements

to the states, and vk is the measurement noise with covariance R. The noise values,

wk and vk represent zero-mean, white, Gaussian noise.

The KF consists of two main operations. The first is the propagation step, in which
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the estimate and covariance are propagated forward in time to the time of the next

measurement. The second is the update step, in which the estimate and covariance

are adjusted using the new information gained from the current measurement. For

each time step forward, the estimate and covariance are propagated using Equations

5 and 6 provided that there are no direct inputs to the system.

x̂−k = Φx̂+
k−1 (5)

P−i+1 = ΦP+
i ΦT

i + Qdi
(6)

The states and covariance are then updated using what is known as the Kalman

Gain, given in Equation 7. This is an optimal weighting term used to account for

the posterior belief to maintain MMSE optimal conditions [2]. This is then used to

update the estimate and covariance solutions, as shown in Equations 8 and 9.

Kk = P−k HT
k (HkP

−
k HT

k + R)−1 (7)

x̂+
i+1 = x̂−i+1 + Kk[z(ti+1)−Hkx̂

−
i+1] (8)

P+
i+1 = (I−Ki+1Hxn(t/ti),t])P

−
i+1 (9)

In the equations above for the update of the system, I is the identity matrix.

Figure 2 demonstrates the iterative flow of the basic KF.
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Figure 2. A flow diagram of the process used in basic Kalman Filtering. Includes
equations for each step, to be discussed below.[2]

It should be noted that a Kalman filter is only valid for a linear, Gaussian system

[20]. Most navigation systems, however, are not linear in nature and as such a Kalman

Filter cannot be directly applied. There are many variations to the KF to account

for non-linear models. The most common variation is the Extended Kalman Filter

(EKF), which linearizes the model first before applying it to the KF [20]. Other

variations of the KF are the Unscented Kalman Filter (UKF), Extended Information

Filter (EIF), and the Unscented H∞ Filter (UHF). A derivation and analysis of each

of these filters can be found in [21] when used for the VSLAM solution.

There are many other estimation methods other than the KF, which seek to

minimize the difference between the calculated pose and the true pose of the vehicle.

One such estimation technique is described in the Perspective-n-Point section of this

thesis. Many of the research documents considered below utilized estimation and

filtering techniques to develop the VisNav solution.
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2.2 Related Research

Though computer vision has been around for decades, its first definitive uses in

navigation were for stellar navigation by NASA mars rovers, and has been expanding

since [22]. The most common form of vision navigation research is Visual Odometry

(VO), which analyzes two consecutive images and determines the motion required

to generate the change in images. This technique is used for Optical Flow (OF),

VSLAM, and the many other vision-aided and vision-based navigation techniques.

Another vision-based navigation technique is structure from motion (SFM), which

primarily provides visual construction of the scene rather than calculation of the

camera pose. Other techniques exist, such as PnP, that do not require consecutive

images in order to calculate the pose of the UAV. For this research, PnP will be the

primary method used. Of the many VO techniques, only a few will be addressed

briefly in this review. From these cases, a single method will be developed for the

vision-aided navigation solution.

Digital Imaging.

All techniques discussed require knowledge of the basics of digital imaging. Figure

3 demonstrates the core functions of digital imaging systems. Computation technolo-

gies have advanced significantly since the first digital cameras and feature detection

techniques, allowing for use of digital cameras in real-time applications for small,

unmanned aerial vehicles. From the digital output from the camera, an array is con-

structed with each value representing the intensity of light from a specific direction.

This array is then used to perform calculations and analysis of the area in the visual

spectrum, as well as detecting the features in the image.
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Figure 3. An illustration of the concept behind digital imaging systems. [3]

Feature Detection.

For almost any VisNav system to function, a feature detection method must first

be used to identify unique objects that can be found again using the same or a

similar process. These objects, or features, are generally used in matching algorithms

to determine if two images share any features. There have been three primary feature

detection methods used in vision navigation since the 1980s. These are line detection,

edge detection, and blob detection [23]. All three of these are discussed in more

detail by Lowe [5]. For this research, Scale Invariant Feature Transform (SIFT) was

determined to be the best choice. Figure 4 details the comparison of several feature

detection methods discussed in [4]. It can be seen that compared to the other blob

detectors considered, SIFT performed equal to or better than the rest in all regards

except efficiency.
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Figure 4. The table is from [4], detailing the performance of several feature detection
algorithms.

SIFT was developed in 2004 by Lowe, and is currently viewed as the standard used

in many vision navigation techniques[23]. SIFT is completed by performing several

operations on the image to deconstruct it to features, or as they are defined in the

case of SIFT, keypoints. First, the image is subjected to Gaussian blurring for a

range of covariance values, and then the differences taken from each level of blurring

to the next. A representation of this process can be seen in Figure 5. In each of

these Difference of Gaussian (DOG) images, local extrema are found and compared

to their eight neighbor pixels. These local extrema are then compared to the DoG

octave, and a global extrema found, as can be seen in Figure 6.

18



Figure 5. An example of calculating the difference in Gaussian blurs for an image [5]

Figure 6. From the DoG calculated, an extrema can be found not only in the image,
but also in the scale of DoGs. [5]

Once extrema are found, keypoint localization is used to remove points with low

contrast that might be sensitive to noise in the image. During this process, keypoints

near or along the edges of the image are also removed. Orientation is then assigned

to the extrema to develop keypoint descriptors. An example of this can be seen in
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Figure 7 for a 4x4 descriptor taken from a 16x16 sample. The final result is a unique

feature that can be used for matching to another image if the feature appears both

images. Keypoints are defined by their descriptor, seen in Figure 7, and in addition

to the descriptor, a detector containing the following information is associated with

each feature:

• Pixel location in [xi, yi]

• Which Scale the feature is located in

• Orientation of the feature, as defined by the descriptor

Figure 7. An example of the orientation assigned to a keypoint to generate a unique
feature. On the left the magnitude and gradient is calculated around the region of the
keypoint. These are then weighted by a Gaussian window, and then accumulated into
orientation historgrams, an example of which is on the right. This example shows a
2x2 array from an 8x8 whereas the algorithm utilizes a 16x16 to a 4x4 array [5].

Though SIFT is commonly used as the feature detection method for VisNav re-

search [24][25][26][27], there have been many variations and alternatives developed.

One common alternative is Speeded-Up Robust Features (SURF), which was developed

in 2008 in the hopes of faster performance than SIFT. SURF has claimed to outper-

form previously-proposed schemes with respect to repeatability, distinctiveness, and

robustness, while still being faster computationally [28]. It was demonstrated that

SURF was indeed faster computationally but reduced the accuracy of the estimates
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used in analysis [21]. There have been many cases in which SURF was utilized in lieu

of SIFT because of its faster computation [26] [29].

SIFT, although proven to be the more computationally intensive feature detection

method, provides a larger quantity of unique keypoints for matching and, as such,

will be used as the feature detection method for this research. SIFT will be used for

deconstructing the images gathered in real-time, as well as the satellite orthophotos

that will comprise the pre-generated database of a priori information.

Visual Odometry.

As stated in the chapter introduction, VO is the process of determining the struc-

ture, or pose, of a vehicle based on the motion from an image taken in one moment to

the next. There are many different vision navigation approaches, but the three broad

categories considered are pure Visual Odometry (VO), Optical Flow (OF), and Visual

Simultaneous Localization and Mapping (VSLAM). OF and VSLAM are examples

of varied applications of VO, which use the changes between images to determine

change in pose. Each of these will be described briefly below, as well as how they can

be utilized for vision-aided and vision-based navigation

Visual Odometry is derived from the same concept as mechanical odometry, in

which the current position is determined by integrating the known circumference of

the wheel over the amount of time moved. Likewise, for VO, the pose of the vehicle is

determined by integrating the change in images over the amount of time elapsed from

when the first image was taken to the next [22]. A good survey on the development

and uses of VO throughout the last 30 years can be found in [22]. OF and VSLAM

are often considered subsets of VO, and as such have many common attributes in

their derivation. VO was directly used to obtain a viable and accurate navigation

solution by many [7], [30].
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A less common VO method for outdoor airborne applications is the use of OF.

While OF is used by many animals in nature [27], and has proven useful in indoor

applications [31], its uses for pure navigation are limited. The limitations arise pri-

marily from the larger distance between the camera and the objects, requiring a

greater change in position of the camera in order to obtain a change in view of the

features. A more detailed survey of OF is provided in [27]. Due to the nature of the

COTS solution, many of the more sophisticated techniques for vision navigation were

discarded due to computation power required for real-time operations.

The last method of VO to be discussed, and more commonly used with todays

growing computational power available, is VSLAM. This approach is described in

detail by Durrant-Whyte and Bailey in [6],[32]. It was also used in an indoor envi-

ronment [33]. In this approach, the localization of the aircraft (pose) is estimated

at the same time a database is constructed from the images and features seen by

the onboard digital imaging system. This database, or map, is used for correlation

with images taken at a later time during flight. An analysis of SFM, as well as a

comparison of VO and VSLAM was done at the University of Johannesburg South

Africa in 2011 [34]. This gives a brief discussion of the various forms of VisNav using

stereo cameras, whereas more generic comparisons and analysis of the methods are

available through the VO tutorials mentioned above [22]. Figure 8 demonstrates the

basic fundamentals of using VSLAM for an airborne UAV.
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Figure 8. A simple example of the premise of VSLAM. The position is estimated from
the visible features, and updated as the UAV progresses. It can be seen how this is
typically close to the truth solution, but still contains errors. This image was borrowed
from [6].

VSLAM has been frequently used to obtain vision navigation solutions of au-

tonomous vehicles [24], and has been proven capable of near-real-time implementa-

tion under limited circumstances as well [35]. The primary components that make

up the VSLAM solution are the localization, or pose estimation, and the mapping,

or database generation [36]. Research has been focused on one specific attribute of

the solution, such as the use of feature detection used for image stitching and map-

ping [15], or on the total implementation of the entire method [37]. The VSLAM

algorithms are most useful when there is no a priori information available about the

world, such as the feature database used for this thesis [32]. However, it has been

seen that with information available, a vision-only navigation solution is available

that does not depend on any sensors other than the monocular or stereo cameras

used onboard the UAV [38].

Though VSLAM is commonly used as the vision-based and vision-aided naviga-
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tion solution in most research applications [34][36][24][39], it can be computationally

expensive. It is based on stochastically determining the pose of the vehicle while

building a database of reference imagery for later correlation. This method provides

results with sufficient accuracy, especially for post-processed data from flights [18].

Due to the relative nature of VO and VSLAM initialization and calculation, an ab-

solute pose cannot be calculated using these methods [32]. Given that a pure SLAM

technique cannot determine the absolute position of a vehicle, it was not considered

for this thesis.

Perspective-n-Point.

The proposed method of navigation for this research is the PnP algorithm, as

it is computationally simple, obtains an absolute position solution, and is readily

available through open source computer vision libraries. All three of these were

equally important in the decision to use PnP as the VisNav soltuion for this research.

PnP is based on the concept of Bundle Adjustment, and it is described in detail in

[40]. Exact and approximate solutions are available for the PnP problem [41], as

well as analytic solutions[42]. This problem has been addressed for decades, and as

such, has many solutions available for use. A common use for the PnP solution is

the camera calibration process [43], which is used in all vision navigation systems to

obtain the camera calibration matrix. This matrix consists of the focal length, and

necessary corrections for lens distortions [23]. Figure 9 shows the PnP process used

for this research, relating the 3D locations of the features in the world frame to the

2D location of the feature in the image frame.
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Figure 9. An example of the Perspective-3-Point problem. The pose of the UAV is
located using the correlation between the known 3D feature locations of the world
frame and the 2D locations of the image frame.

The PnP solutions uses n known points to relate the pixel image locations to

known world locations. This technique was considered as it only requires the single

image taken and the database of features to compare to. This means that the po-

sition calculated at any given time is independent of the previous or future position

estimates. This is useful when developing a filter for the overall system. The final

PnP implementation used in this research was developed by Donald Venable at AFIT

based on the works of [40].

PnP provides an estimate for both the rotation of the camera in the world frame,

Rω
c , and the translation of the camera in the world frame tω at the time the im-

age is taken. These are calculated using known world positions of features Xω and

measurements z of the location features in the image frame. Using the camera cal-
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ibration matrix K, the projection model is calculated in Equation 10, showing the

pixel location of the projection in the image plane [40].

h(K,Rc
ω,X

ω, tω) = xi = K[Rc
ωXω + Rc

ωtω] (10)

To formulate the estimation for the rotation and translation, a non-linear opti-

mization strategy is used to minimize a cost function, F(Rc
ω, t

ω). This cost function

is defined as the difference between the measured feature location in the image zk

and the projected features from the projection model given in Equation 10.

F(Rc
ω, t

ω) = zk − xi (11)

The goal of the PnP algorithm is to estimate the pose (Rc
ω, t

ω) of the vehicle

which minimizes the L2-norm of the cost function.

R̂
c

ω, t̂
ω

= argmin
Rc

ω ,t
ω
||F(Rc

ω, t
ω)||22 (12)

In general, the minimization in Equation 12 is non-linear. The function is lin-

earized around the current state estimate, and the error in the states (∆x) is esti-

mated. This change in state estimate is then used to update the state estimate, and

the process is repeated until it converges on a solution. The linear approximation for

this is calculated using a 2nd order Taylor series expansion, provided in Equation 13.

F (x + ∆x) ≈ F (x) + gT∆x +
1

2
∆xTH∆x (13)

In Equation 13, there were several characteristics calculated in order to obtain

the linearized approximation. The Jacobian Matrix, J is the partial derivative of the

cost function with respect to the estimated parameters:
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J =
dF

dx
(14)

The gradient vector, g, is defined as J(x)TF(x), and is the direction of the greatest

rate of change in the parameter space. The Hessian matrix, H, is the second derivative

of the cost function. There are two approaches to iterating the approximation to

determine a final solution. The first approach is the pure calculus approach, in which

the derivative of Equation 13 is set to zero in order to determine the value for (∆x).

This process is defined as [40]:

1. Set the derivative to zero:
df

dx
(x + ∆x) ≈ H∆x + g = 0

2. Use this to develop the Newton Step: ∆x = −H−1g

3. Update the function: F (x + ∆x) ≈ F (x)− 1

2
∆xTH∆x = F (x)− 1

2
gTH−1G

4. Iteration of this process gives Newtons Method

This approach will yield a correct solution, but it does not usually work due to the

nature of the Hessian matrix. H may not be invertible or full rank, which can cause

the method to break down, or the approach to never reach a meaningful convergence.

One solution to this problem was developed by [44], iterating between the Gausss

Newton and the gradient descent to reach a minimum of the function. This is done

by introducing a Tikhonov regularization component, which changes the problem to:

(
J(x)TJ(x) + λD(x)TD(x)

)
∆x = −g (15)

where D(x) is the scaling matrix defined below. While some of the higher order

terms are lost in this process, an approximation for H is made using the Gauss-

newton approximation given in Equation 16. This is based on an assumption that
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the second-order approximation is either roughly linear, or that the resulting errors

are relatively small.

H = J(x)TJ(x) (16)

In Equation 15, the D(x) term represents a scaling matrix, which is typically the

square root of the diagonals of the Hessian matrix. For the LevenbergMarquardt

algorithm (LMA or LM), the following process was used to determine the solution.

1. Set and Average Hessian matrix value: Havg = J(x)TJ(x) + λD(x)TD(x)

2. Solve for ∆x = −H−1avgg

3. Update the state vector as previously done. Methods addressed in [40] are

used to account for the possibilities of internal constraints for states such as the

rotation.

4. Adjust the damping factor, λ based on the behavior of the cost function in

Equation 11. This will allow for a more accurate estimate, if given the proper

termination criteria.

From this second process, a more reliable solution can be computed in a timely

manner. For the actual computation of this, OpenCV has a built-in function that

has been optimized for speed as well as accuracy. This OpenCV solution utilizes

RANSAC for outlier elimination, allowing for adjustable parameters to expand or

narrow down the solutions and accepted results [45].

2.3 Analysis of Similar Research

While reviewing literature in this field of research, several articles were found that

use a process similar to the research conducted in this thesis, the foremost being

the work done by Chiu [7] and Samadzadegan [8]. Chiu and Samadzadegan both

28



utilized a pre-generated database of images and keypoints referenced with geo-spatial

information similar to the one utilized in this thesis. Unlike many of the previously

discussed works, no VSLAM or VO method was utilized in either of these research

documents.

The first research document mentioned, [7], estimated the 3D absolute pose using

an inertial measuring unit (IMU) and two visual measurements with a pre-processed

reference image. The primary commonality is the feature database, created from

reference satellite/aerial imagery rendered from a 3D terrain model. This is similar

to the feature database proposed for the research detailed in this thesis. The second

commonality is the 2D-3D tie points used to define the navigation states for Chiu’s

research. These tie points create the 3D absolute pose from successful geo-registered

features from the reference image. Their second visual measurement was created from

geo-registering feature tracks, which created 3D reference features if these features

were shared between consecutive video frames. They performed 2 test scenarios,

similar to the test scenarios proposed in Chapter 3 of this thesis. The first scenario

consisted of acquiring flight images from urban and forested environments, whereas

the second scenario focused on primarily urban environments. Figure 10 shows the

process used to gather video images, compare frames to the geo-referenced database

to develop the 2D-3D geo-registration, and apply these and the IMU data to the

inference engine to develop the final 3D absolute pose solution.
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Figure 10. The method used by Chiu and others to gather images for processing to
develop a 3D pose estimation of the UAV [7]

Though the research proposed by Chiu has many similarities to the research pro-

posed in this thesis, there were a few key differences as well. One of the main focuses

of Chiu’s work was the implementation of the complex filtering scheme, the factor

graph sliding-window. This greatly increased the complexity of the navigation solu-

tion, but it also greatly improved the performance of the system. Their test system

was also of a much higher quality, containing propriety systems, algorithms, and com-

ponents such as the IMU, iSAM2 smoother, and RTK differential GPS system. These

higher quality components greatly outperform COTS components in most regards,

and introduce less errors into the final navigation solution. Lastly, the aircraft flown

for the flight tests was piloted rather than the UAV proposed for this thesis.

The results obtained by Chiu were promising, providing an absolute pose estimate

with 3D distance root-mean squared (DRMS) error of 9.83 meters when the 2D-3D

tie points were applied to the filtering method for the scenario containing urban and
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forested environments. When applied to the purely urban environment, a 3D DRMS

error of 9.35 meters was achieved. These results are promising, and demonstrate the

capabilities of a much more complex system to provide an accurate VisNav solution

for real-time calculations.

The second work considered was done by Samadzadegan [8] in 2011. The proposed

method from this research is nearly identical to the method proposed for this thesis,

shown in Figure 11.

Figure 11. The method used by Samadzadgen to gather images for processing to
develop a 3D pose estimation of the UAV given a pre-processed feature database [8]

For the above method, the geo-referenced database developed during pre-processing

was nearly the same as the feature database developed in the Chiu research as well

as the research proposed in this thesis. The matching process is also similar, utilizing

a nearest neighbors scheme to match features, and RANSAC to remove outliers from
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matching. This is where the commonalities end for this research unfortunately.

The method used during flight was not a common VisNav solution, and was not

covered in sufficient depth for replication. The tests performed were only simulations

and not in fact real-time test flights. The geo-registration process was used in lieu

of the more formal PnP process, which led to a more poorly defined solution deriva-

tion. The primary difference in methods from the Samadzadegan research and the

research proposed in this thesis is the feature algorithm utilized to find keypoints in

the images. The Samadzadegan research used the SURF algorithm rather than the

SIFT algorithm. The research boasted a 5 meter pose error and a 1 degree attitude

error using this method. These results are seen as the ideal solution. The research

presented in this thesis aims to have the same or greater accuracy, while being applied

to a real-time autonomous COTS SUAS.

Extensive research has been conducted in the field of visual navigation for post-

processed data [46], as well as for simulated results [8]. For the work using simulated

results, the accuracy of the method proposed by Abdi is comparable with GPS/IMU

system.[8] Another work using similar processes was conducted by Duo-Yu Gu in

2010, which verified the proposed algorithms ability to solve VisNav problems for

simulated data [47]. Even with the amount of research dedicated to this navigation

problem in recent decades, a full implementation of real-time autonomous navigation

using monocular vision for a COTS SUAS has not yet become a common method

for testing navigation solutions. Many solutions utilized COTS equipment, but not

for real-time or near real-time analysis. Many others only used simulations, but this

research aims to fill this gap in the field.
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2.4 Chapter Summary

Though there are many VisNav solutions available, the algorithm decided upon for

this research was the Perspective n Point algorithm as it provides an adequate solution

for a simple system, and does not require a framework to be established for calculating

between consecutive images. Using similar processes to PnP, a VisNav solution of

less than 10 meters was proven to be possible, and as such this research strives to

produce a comparable solution. With the rising technological level of COTS and OSS

components for UAVs, a system can be constructed to implement VisNav solutions

for a small unmanned aerial system with little cost compared to implementation on

a full sized piloted aircraft. The primary focus of the research will be on the vision-

aided navigation solution and the implementation of these navigation solutions, which

includes the integration of the COTS equipment. This will be done by refining the

PnP solution to work with the COTS SUAS, and to develop test strategies to prove

the validity of the system for VisNav application in GPS-denied environments. These,

as well as the test flights and procedures are detailed in the next chapter.
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III. Methodology

3.1 Chapter Introduction

The overall objective of this research it to determine the accuracy of the COTS

vision-aided navigation system and compare it to the accuracy of a GPS navigation

solution for real-time use. In order to achieve this objective, information must be

collected on the test area of interest, the algorithms developed in order to utilize this

information, and the hardware integrated with the data and software. A series of

ground and flight tests were used to verify the integration of the system components

as well as to verify the accuracy of the system at different stages of development.

When proven capable, the system was demonstrated using near real-time operations.

Key information for analysis included the true location of the UAV during flights, the

telemetry of the aircraft, the database of a priori information, and images obtained

from the downward facing camera on the aircraft. The information was obtained

from images and log files from past flights, data available on the internet, as well

as images and 3D telemetry from the autopilot and payload during flight used for

real-time applications. The various system components, as well as their integration,

will be discussed in detail in this chapter, including how these will be used to meet

the test objectives.

3.2 Database Development

In order for the PnP solution to work, a database of a priori information is

required. This database is a HDF5 [48] patterned structure of 3D geo-located SIFT

keypoints and descriptors from satellite imagery, terrain elevation data, and other

Geographic Information Systems such as geoid shift files. For the database, a varying

range of satellite and aerial imagery is desired in order to verify the results for a
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range of pre-processed information. The main sources considered for imagery are

GoogleMaps [49] and DigitalGlobe Imagery[9].

Of these sources chosen, the GoogleMaps imagery is completely open-source and

available on the open internet, but the DigitalGlobe imagery requires special permis-

sions and/or purchase. GoogleMaps utilizes DigitalGlobe at several zoom levels, but

the high resolution imagery from DigitalGlobe is not available directly from Google.

There is varying quality of the imagery gathered from each source as well, as described

by the ground pixel density (GPD). GPD is defined as the number of image pixels per

real world area. Of the two sources, DigitalGlobe provided a greater range of high

resolution orthophotos with more reliable, higher GPD. This means that the detail of

this imagery theoretically provides the most keypoints when the image is analyzed.

The orthophotos are downloaded as GeoTiff open file geospatial information formats

when possible, and if not, then as JPEGs or Tiffs, and the geospatial data is added to

them afterward. This process will be discussed in the next chapter in the Database

Variants section in greater detail. .

The database was constructed using the HDF5 format, with the database consist-

ing of just the area of interest (AOI). For this research, the AOI was only a 3km by

1.72km area, limiting the size of the database to reduce the scope of the database

development. The amount of data used for the feature database was miniscule to the

storage capacity of the system, and did not effect the computation time of the system,

even for smaller processors like the NUC. This orthophoto was then split to smaller

regions, or tiles, which are then stored in the database so that only a single tile must

be loaded into local memory at a time for use in the PnP calculation. Figure 12

shows the image used for the database referenced in the Flight Tests, which contains

the primary location for flight tests and the secondary location as well.
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Figure 12. The location of all Flight Tests will be Himsel Airfield located at Camp
Atterbury, IN. The area shown is the entire AOI used for the database of geo-located
keypoints. A high resolution version of this image was used for the database orthophoto.
The image is from DigitalGlobe [9] and requires purchase for full access.

After the orthophoto class is created in the HDF5 format, the SIFT feature de-

scriptors were added as well. The orthophoto is split into strips and passed into the

SIFT algorithm. The WGS-84 position of each keypoint is calculated and added to

the database along with the DTED-1 vertical datum and the EGM-96 ellipsoid-geoid

shift values. For these keypoints, only the top 1000 were kept per strip in order to re-

duce the overall size of the database. This particular database structure was decided

upon to allow for real-time access to the data, limiting the latency of the system for

determining the geo-location of the UAV. The algorithm that utilizes this database

is described in the following section.

3.3 Algorithm Development

All algorithms developed for the PnP solution were based on the solutions devel-

oped by Venable. The algorithm framework for the solution utilized OSS for solving

basic operations, but was heavily modified to provide the VisNav solution in the

preferred format. Similar solution algorithms can be developed using OSS and the
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methods described below. The image processing unit of the system, to be described in

section 4 of this chapter, runs a Linux operating system (OS), and utilizes primarily

Python for acquisition and analysis of the images. A repository of Python packages

called Anaconda [50] is utilized as it contains the majority of packages necessary for

computing the PnP solution. Anaconda includes numpy, matplotlib, and many other

commonly used packages. One of the critical packages included is OpenCV, an open

source computer vision package commonly used for a wide array of computer vision

processes, including finding keypoints and matching images [45]. A version of SIFT

is included in OpenCV, but as it is open source, the specific SIFT scripts can vary

from the source of the OpenCV package. Also included in most OpenCV packages

are scripts for image matching, camera calibration, etc; all of these scripts are mod-

ifiable and will be customized as required to obtain a functioning algorithm for 3D

geo-location of the UAV.

Image Matching.

In order to reduce the number of points analyzed in the algorithm, and thus

reduce the computation time, the image from the UAV is matched to a tile in the

region of interest. Many matching algorithms and scripts currently exist for python

and MATLAB, and most use some form of image decomposition to match edges,

lines, or keypoints. The images from the aircraft are decomposed using SIFT, and

the keypoints used for matching the image to the specific keypoints in the tile. This

is the first method to narrow in on the geo-location of the UAV from the region of

interest in a single panel.

There were two methods considered for image matching in this project. The first

method is known as the “Brute Force Matcher”(BFM) and is, as the name suggests,

the brute force method of matching a single keypoint descriptor at a time. The
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feature descriptor from the image is compared to each descriptor in the database for

the specific image being matched. The second matching method, and the one used

for the results presented in this thesis, is the Fast Library for Approximate Nearest

Neighbors (FLANN) [51]. This matcher is optimized for finding matches in large

datasets, and as such is ideal for this research. Eventually the image database will

be too large for the use of BFM to be practical, when larger AOIs are utilized.

Attitude-Aided PnP Calculation.

The six DOF solution for PnP was shown in the previous chapter. Though this

calculation is ideal for an aircraft using just vision navigation, this particular research

utilized a COTS autopilot as well that fed the attitude solutions to the image pro-

cessor for computation. Since the PnP solution is attitude-aided, only the 3 DOF

solution for translation must be calculated. The 6 DOF solution is calculated using an

implementation of an OpenCV algorithm, and then this solution is used to initialize

the 3 DOF implementation. The process for calculating the translation only PnP is

very similar to that of the 6 DOF solution, with only minor adjustments. The calcu-

lation of the attitude-aided solution starts with the un-normalized Jacobian, shown

below [40].

δFj(x)

δtω
=

δ

δtω
(−KRc

ωt
ω) = kRc

ω (17)

In Equation 17, the K is the camera matrix, Rc
ω is the rotation from the world

frame to the camera frame, and tω is the translation of the from the reference location

to the calculated position of the vehicle expressed in the world frame. From this, the

3-vector [xi, yi, zi]T must be normalized for the zi component to find 2-dimensional

measurement zk. In order to normalize the solution, the quotient rule is applied, as

seen in Equation 19.
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F (x) = g(x)/h(x) (18)

∂F (x)/∂x =
g′h− h′g

h2
(19)

In Equation 19 the multiplication is element-wise, not matrix multiplication. From

the PnP model, the following decomposition is given:

g = [z]xy = [xk, yk]T , 2x1 vector (20)

h = [z]z = [zk]T , 1x1 scalar (21)

g′ = [−KRc
ω]rows[1:2], 2x3 matrix (22)

h′ = [−KRc
ω]rows[3], 1x3 matrix (23)

3.4 Implementation

The implementation of the system proved to be a large piece in the scope of this

research, as much of the hardware and software used were either COTS or OSS, and

as such were not specifically designed to work together. In some instances, especially

for OSS, integration was not guaranteed due to improper operating systems or just

incompatible software connections. Work was done to customize these components

to communicate together in order to utilize the algorithms and database to provide

a VisNav solution to the system. Most components are COTS or OSS other than

the specific PnP algorithms and the DigitalGlobe High resolution imagery. Each

component will be covered in detail as well as the integration of the components to

form the functioning SUAS.
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Airframe.

The airframe selected for this research was the 12 Foot Telemaster with Drop

Box, as shown in Figure 13. This particular aircraft was chosen for its size, stability,

and customizable payload box with an open bottom. This allows for the payload

box to be adjusted to easily allow movement of components as needed, as well as the

addition of other components if required.

Figure 13. The 12ft Telemaster, used as the platform for this research.

This particular aircraft has an overall length of 90inches from nose to tail, a

wingspan of 12 feet, an empty weight of 31lbs, and a wing area of 3050 square inches.

Normally for hobbyist UAVs, the wings are the primary source of lift, and the tail

is typically a symmetric airfoil. The Telemaster, however, has a lifting tail to aid its

12 foot high lift wing, allowing the UAV to easily carry payloads up to 20 pounds.

Technical specifications for this airframe can be found at [52]. The particular aircraft

used by the AFIT ANT center is powered by an 85cc 2 stroke gasoline engine.

Autopilot.

For autonomously controlling the UAV, a COTS autopilot was chosen that would

allow for possibility of autonomous flight using vision-aided navigation. The Pixhawk
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Autopilot was determined to give the best control of flight parameters and modifiable

flight software, running the Arduplane 3.3.0 firmware. Details on the autopilot can

be found at [53] as well as the many contributors to the open source packages used

by the autopilot. The autopilot can be seen in Figure 14 below.

Figure 14. The Pixhawk autopilot is used as the primary autonomous control of the
aircraft.

One of the reasons this autopilot was chosen was that the firmware includes a

built-in Extended Kalman Filter (EKF) for updating position and orientation. Many

COTS autopilots utilize a filter, but it is not always available in the autopilot firmware

for modification. This means that the position solution and telemetry of the UAV will

be more accurate than that of other autopilots that do not have this capability. With

the primary focus of this research being to implement the system in a simulated GPS

denied environment and test the accuracy, an autopilot allowing for filter parameter

modification increases the number of factors available for improving the accuracy.

The computation time for the firmware on the autopilot to run the EKF is negligible,

demonstrating the ease of running an EKF on most platforms.

The other justification for choosing this autopilot is its many built in redundancies.

It has redundant power supply inputs and automatic failover for safer use in case of

power outages or shorts in the system. It also has multiple ports for accessing the

telemetry of the aircraft, as well as multiple ports for GPS or navigation solution
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input. Particular interest was given to the redundant telemetry ports, allowing roll,

pitch, and yaw solutions to be read directly from the autopilot. These pieces of

information, as well as others from the telemetry, are used in the algorithm solution

for the vision-aided navigation.

The autopilot has a primary GPS port, and a redundant serial port often used for a

secondary GPS unit. A primary GPS unit will be maintained for the aircraft during all

flights, as for a traditional aircraft, but the second port for the redundant receiver will

be used as the input for the vision-based solution, mimicking a pseudo-GPS solution.

This connection was intended for the Flight Tests discussed in Section 3.5, but not

utilized for this thesis. The autopilot is programmed to switch between the two geo-

location solutions based upon the number of visible satellites, and this functionality

will be taken advantage of by the on-board computer to force the autopilot to use the

desired solution at any given time. If the VisNav solution is deemed accurate enough,

the pseudo-GPS solution from the NUC will set the number of visible satellites greater

than the GPS receiver while in flight. The level of accuracy required for this transition

is a solution within the same magnitude of the GPS receiver or better.

Image Processor.

The on-board computer is used as the image processor for determining the pose

of the UAV and sending the geo-location to the autopilot as well was the primary

computation engine for determining the VisNav solution. Although the computer

performs more operations than just image processing, the processing and pose calcu-

lation are the primary functions of this component component. Secondary functions

include telemetry and data storage of in-flight calculations and observations. The

on-board processor used for this task is an Intel Next Unit of Computing (NUC)

D53427RKE [54]. This is a mini computer including an i5 processor and 8GB RAM,
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and will not only analyze the images captured and output the geo-location solution,

but will also store the images and input telemetry on the 500GB SSD for any post-

processing necessary. The NUC runs a Linux OS Ubuntu 14.04. The algorithms run

on the NUC are primarily Python scripts, utilizing the many packages described in

Section 3.3. More specific technical details of the NUC are available at [54].

Figure 15. Intel NUC used as the primary processing unit of the system.

Payload.

The payload of the aircraft is be contained in the payload box, described below.

The box is a 12.25in by 8.5in by 5.5in plywood construction split into two compart-

ments. The shape of the box, including the division of compartments, is designed to

provide structural support for the aircraft as well, and as such only minor changes

to the structure of the box could be made. The primary components placed in the

payload are the Intel NUC, the Prosilica 1660C machine vision camera [55], Netgear

Ethernet switch for communication between components, redundant autopilot, and

power assemblies required to provide power to all components in the payload.

The Prosilica 1660C camera was chosen for the digital imaging system due to its

size, resolution, and global shutter speed. The prosilica is a 2.52in by 2.15in by 1.67in
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camera weighing 0.392 pounds, and is capable of 34fps at 1.9 Megapixel, with image

resolution of 1600 x 1200. The lens used was the M0814-MP Computar Factory

Automation Lens [56]. The camera and lens were chosen primarily due to their

previous use in research conducted using this airframe, camera, lens, and processor

[14].

For the specific flight tests, the camera was calibrated before and after each flight

to ensure there was no change in the intrinsic properties of the camera. This was

done using the methods and MATLAB scripts developed by the California Institute

of Technology [43]. The camera runs on 5-24VDC, but performs optimally at 12

VDC, and can be powered using a 3s LiPo battery for flight tests. It is connected to

and controlled by the NUC through the Ethernet switch. The camera also outputs

an analog voltage pulse each time an image is taken. This output pulse was intended

to be sent to the autopilot and recorded in the telemetry.

Figure 16. The Allied Vision Technologies Prosilica 1660C machine vision camera is
the primary electo-optical sensor utilized in this research.

The Netgear Ethernet switch used in this payload is a powered 5 port Gigabit

switch, as seen in Figure 17. It is used to connect the network components of the

NUC, the prosilica camera, and the ground control laptop for monitoring the NUC.

The connection to the ground control laptop is achieved through the Wave Relay

Mobile Ad-Hoc Network (MANET) [57], which will be described in the following

section. This particular switch was chosen for its size and durability. Even though it

has a metal frame and adds more weight to the payload, it is physically smaller than

many other switches considered and allowed for more room in the payload box. This
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switch was crucial in the connection to the ground control station from the payload

due to the limited Ethernet connection of the NUC. Technical specifications for this

particular switch can be found in product specification [58].

Figure 17. The gigabit switch used to connect the various network components is the
Netgear Prosafe 5 Port Gigabit Switch.

The Telemaster UAV has one side of the box closed and the other open, so that

the heavier components can be held on the more secure side of the payload box and

the camera and other components needing to be open to the outside in the other

side. In order to power the NUC, a voltage regulator was used to reduce the voltage

of a 6s 3300 mAh LiPo battery from its nominal 22.2V to the necessary 19V input

to the NUC. This was placed on the same side of the box as the NUC and the 6s

LiPo battery. The other side contained the camera, ethernet switch, and the 3s LiPo

required to power these two components. Figures 18 and 19 below show the configured

box for flight tests.
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Figure 18. The bottom view of the constructed payload box to be flown in the Tele-
master. The Prosilica camera can be seen on the right (2.), and the voltage regulator
required for the NUC can be seen on the left(1.).

Figure 19. The top view of the constructed payload box to be flown in the Telemaster.
The NUC (3.) and Voltage Regulator (1.) can be seen on the right side of the payload,
which is closed to the outside of the aircraft, and the Netgear Switch (4.) can be seen
on the left.

Ground Control Platform.

The ground control platform consists of multiple components as well. This sub-

system includes the communications for both the aircraft and the payload, the ground

control stations for the autopilot and the payload, and the required software on the

ground control stations (GCSs). For communication to the autopilot from the primary
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GCS, an RFD900 modem is used at 1W transmitting power and 915MHz frequency.

For communication to the NUC from the secondary GCS, the Wave Relay MANET

was used. This system works as a wireless IP router connecting the GCS to the

airborne node with up to 2W transmitting power. This was utilized in the form of

a remote desktop set up on the secondary GCS to see and control the NUC, purely

for monitoring the progression of the algorithm and navigation solution. The remote

desktop is established using an open source network client called RealVNC[59] on

the secondary GCS to connect to the virtual network computing (VNC) programs

built-in for Ubuntu 14.04 on the NUC.

For controlling the autopilot, Mission Planner v1.3.24 was used on the primary

GCS. Mission Planner is open-source software that includes an extensive graphics

user interface (GUI) that allows for full control and modification of parameters of the

autopilot. Figure 20 shows an example of what this GUI looks like on the “Flight

Data” screen, showing the aircraft’s position as well as a virtual heads up display

(HUD) to show the attitude of the aircraft. This software is used for the control of

the UAV in autonomous mode, setting waypoints, and changing the flight parameters

of the aircraft. Mission Planner hosts many technical specifications and software

information online [60].

47



Figure 20. Mission Planner is the primary sofware run from the GCS, and is responsible
for control of the aircraft during autonomous mode. Waypoints can be written to the
autopilot using the ’Flight Plan’ tab seen at the top, and the real-time position and
orientation seen on the map and HUD shown in the image. The primary position of
all GCS for Flight Tests is denoted by the golden star.

Integration.

The above components and subsystems were integrated to form the full UAS, as

well as the vision-aided navigation solution. Figure 21 shows the diagram of the full

system as well as the information passed from each subsystem to the next.
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Figure 21. The system diagram for the integration of the image-aided navigation sys-
tem and the Pixhawk autopilot. The control of the VisNav solution stems from the
NUC, is monitored by the second GCS, and is then sent to the Pixhawk for autonomous
navigation in GPS-denied environments. The dotted, red lines denote intended con-
nections not achieved in this thesis, whereas the black denote the current operating
connections.

It can be seen in Figure 21 that the autopilot is the end point for the information,

with the final geo-location being sent to the autopilot in the serial port as an alter-

native GPS 3D pose. The inputs to the autopilot are the final geo-location solution,

the information from the primary GCS, and the camera signal pulse when images are

acquired. The primary outputs are the telemetry down to the GCS and to the NUC.

The camera receives the command to take an image from the NUC, and sends the

image back, but also sends a 5V pulse to the autopilot when the image is taken. The
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5V pulse is recorded on a channel in the autopilot logs so that when the telemetry is

sent to the NUC, the attitude of the aircraft can be matched with when the image was

taken. However, due to integration issues, this was not the method utilized in this re-

search. Instead the telemetry data was read from the autopilot immediately after the

image was acquired, before the image was even buffered into memory and converted

to a standard image format. It is imperative to obtain the aircraft telemetry as close

to the time of the image as possible, and while the first method is ideal, the second

method was used due to integration issues. An example of the coding for image ac-

quisition is provided in Appendix A, while an example for the coding for reading the

telemetry is provided in Appendix B, and Appendix C contains an example script

containing the telemetry read immediately after the image was acquired.

The NUC utilizes a Python wrapper called Pymba in order to control the image

acquisition of the camera. Pymba is based on the software development kit called

Vimba provided by the Prosilica manufacturer, Allied Vision Technologies. This al-

lows control of the internal parameters of the camera, including exposure, aperture

settings, and many others. The lens allowed for manual adjustments of focal length

and aperture, but these were fixed before calibration, and remained constant through-

out the flight tests.

The NUC commands the camera to acquire an image, analyzes the image, reads

the telemetry, and uses the PnP algorithm to produce a 3D pose of the aircraft. This

is then sent to the autopilot via the serial port as a redundant pseudo-GPS signal for

automated flight.

3.5 Test Strategies

Using the database, algorithms, and hardware described above, ground and flight

tests were set in place to achieve the objectives. These tests are defined as either
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functional tests, where the primary goal is to validate the integration and operation

of the components, and performance tests, where the focus is on how well the com-

ponents perform their intended functions. In total, three flight tests were conducted,

and numerous ground tests were performed between each flight test. All Flight Tests

were conducted at Himsel Airfield, located in Camp Atterbury, Indiana.

Flight Test 1.

The first flight test occurred in August 2015. This test was primarily to verify

the performance of the airframe and suitability to carry the desired payload, as well

as to verify the individual hardware components of the payload. The area flown

was a single rectangular pattern in the area of interest, intended to gather images of

both the open field by Himsel airfield as well as the helicopter parking apron. While

the waypoints were a rectangular pattern, due to winds and turning parameters of

the Telemaster, the final flight profile appears more like a peanut. From this test,

telemetry data was saved on the autopilot and the images were saved on the NUC

for post-processing. The flight pattern is shown in Figure 22.
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Figure 22. The Mission Planner telemetry display of the rectangular waypoint flight
pattern A, flown for all three Flight Tests. It can be noted that the pattern includes the
grassy fields next to Himsel airfield as well as the parking apron next to the airstrip.

From the data gathered, the PnP algorithm was constructed and tested. The

autopilot was tuned to allow optimum performance while flying autonomously. The

tests performed during the first flight test were almost entirely functional tests. The

primary focus was to verify the feasibility of the aircraft and payload components to

perform the required operations.

Flight Test 2.

The second flight test took place in October 2015, and was focused on the inte-

gration of the system components and collection of aerial imagery of the AOI. Images

were acquired at multiple altitudes, as described by Table 1, to allow for testing alti-

tude effects on the PnP solution. A total of 1740 images were collected while flying

the same pattern as described in Figure 22 from Flight Test 1. Of these images, only

the ones at the desired altitudes are listed below. The number of images from 160m
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and 190m were an approximation from the telemetry data, since the wind made it

difficult to discern the exact moment the change in altitude occurred.

Table 1. The test matrix used when conducting the Second Flight Test in October
2015.

Altitude [m] Flight Pattern Number of Images
130 A 304
160 A 290
190 A 570
250 A 280

From the images and telemetry data collected, the PnP algorithm was tested

and improved for performing in this AOI. From the data, the PnP algorithms were

modified to perform real-time and near real-time operations in preparation for Flight

Test 3, improving performance and computation time of the solution. Numerous tests

were conducted to analyze the data in order to prepare the solution for the last flight

test, including hardware in the loop (HIL) tests, in which the autopilot was connected

to the NUC while in ground tests in order to ensure proper reading of actual attitude

from the Pixhawk autopilot.

Flight Test 3.

This demonstration flight was used to verify that the system not only performs

to the desired degree of accuracy, but also at real-time or near-real-time for the

autonomous operations. From Flight Test 2, it was noticed that there were limited

measurements possible from the flight pattern flown, previously shown in Figure 22.

To account for this, a different pattern was flown in the hopes of obtaining more

measurements, referred to as Pattern B shown in Figure 23. The test matrix below,

Table 2, describes the flight parameters used to verify real-time autonomous flight

of COTS UAVs. The results from this flight test are discussed in detail in the next

chapter.
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Figure 23. The Mission Planner telemetry display of the rectangular waypoint flight
pattern B flown for the third Flight Test. This pattern was chosen to overfly more
obviously unique features, especially the buildings located at Himsel airfield.

Table 2. The test matrix used when conducting the Third Flight Test. It specifies the
heights flown by the Telemaster UAV for each flight pattern and the resulting images
and successful PnP measurements obtained at each altitude.

Altitude [m] Flight Pattern Number of Images Number of Measurements
190 A 159 14
250 A 130 35
250 B 227 87
190 B 155 35

The final pre-flight process used for these flight tests is given in Appendix E. This

includes the pre-flight setup for the UAV and the payload as well, including brief

instructions for how to calibrate the camera for VisNav flight tests.

Chapter Conclusions.

This chapter introduced the details of the feature database development, and how

it was utilized in the position solution of the system. The specifics of the attitude-

aided PnP solution were also described, leveraging OSS to create a stable PnP algo-
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rithm. Both of these processes were developed by Venable, and modified to fit the

specific AOI of this research. The system structure was designed for implementa-

tion and Flight Tests in the specific AOI. The test structures were developed for the

Flight Tests in order to test the VisNav solution on post-processed flight data as well

as real-time flight data. The results of these flight tests as well as the modifications

to further improve the system will be detailed in the next chapter.
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IV. Results and Analysis

4.1 Chapter Introduction

This chapter focuses on the results obtained from real-time implementation of

the vision-aided navigation system, and the analysis of these results. The primary

focus is on the real-time results and analysis of the data from the flight tests. The

second flight test acquired images of the AOI for post-processing development of the

real-time PnP solution. The third flight test implemented this real-time algorithm for

different regions of features in the AOI. The secondary focus is on alterations done

to the database, PnP algorithm, and other parameters used in the calculation of the

navigation solution to improve the accuracy of the system. The primary objective of

this chapter is to present the data gathered in a manner useful for comparisons to

other navigation systems and to address potential limitations of the current system.

The analysis will consist of a look into the position calculations from the flight tests;

breakdowns of the time and errors for the computation, database variants, parameter

adjustments; and limitations to the system.

4.2 Real-Time Analysis

Real-time testing of the system was performed in October 2015 at Himsel airfield

in Camp Atterbury, IN. During this flight test, two different ground-track patterns

were flown, as seen in Figure 24 below. The first ground-track was the pattern flown

during the second flight test, in which it was noticed that position solutions were only

able to be calculated in a limited number of areas. Once the system was modified for

real-time calculation, this area was flown again, with similar results. The switch to

the second pattern was done to increase the number of features the aircraft saw while

in flight.
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Figure 24. The Mission Planner telemetry display of the rectangular flight patterns
flown for the third Flight Test. It can be seen that the first pattern, A, was flown in
order to capture the field West of the airstrip, and the second pattern was flown to
capture the buildings East of the airstrip as well as the airstrip itself. It was noted that
the system was able to calculate more position solutions from Pattern B.
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From these different ground tracks, the position error was calculated with respect

to the onboard GPS position measurement. Instead of a position error in regards to

the vehicle frame, the position error is presented in north, east and down coordinates.

The 6DOF solution was obtained using the OpenCV RANSAC algorithm described

in Chapter 2. The 3DOF solution was obtained through the attitude-aided PnP

calculation process defined in Section 3.3. Figure 25 below shows the errors calculated

from the open-source 6 degree of freedom PnP calculation. Figure 26 is the rotation

constrained PnP solution errors.
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Figure 25. The NED error of each measurement from the 6DOF OpenCV PnP
RANSAC calculation for the real-time verification Flight Test. The vertical dotted
line denotes the separation from Flight Profile A and Flight Profile B.
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Figure 26. The NED error of each measurement from the attitude-aided 3DOF PnP
calculation for the real-time verification Flight Test. The vertical dotted line denotes
the separation from Flight Profile A and Flight Profile B.

As can be seen by the figures above, the 6DOF solution does provide less accurate

solutions as expected. The solutions obtained using the 6DOF OpenCV method had

an overall DRMS of 58.841m and and MRSE of 69.435m. The attitude-aided 3DOF

solution is more difficult to see in Figure 26, which has the same scale as Figure 25

for comparison purposes. A closer view of the 3DOF solution is given in Figure 27.
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Figure 27. The same data as shown in Figure 26, but not forced to the same con-
strained axes as the OpenCV solution. This allows for greater visible inspection of
the measurement errors. The vertical dotted line denotes the separation from Flight
Profile A and Flight Profile B.

The 3DOF attitude-aided solution error in any direction is much smaller than the

6DOF solution. A common error characteristic was present in the East direction, as

can be seen throughout the flight data. When the aircraft was flying either North

or South, a near constant error appeared in the East and West direction, dependent

on the flight direction. This led to the suspicion of an attitude error in the VisNav

solution, predominating in the roll characteristic of the solution. The speculation was
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further enforced from the fact that the error is greater at 250m altitude than at 190m

altitude, and a constant attitude error would present this sort of characteristic. This

suspicion is tested using post processing in Section 4.4.

For clarification between different analysis techniques, the mean, standard devia-

tion, distance root mean square error, and mean root mean square error as used in

this thesis are defined as follows:

x̄ =
1

n

n∑
i=1

xi (24)

σ =

√√√√√√
n∑

i=1

(xi − x̄)2

n− 1
(25)

RMS =

√√√√√ n∑
i=1

x2i

n
(26)

DRMS =

√√√√√ n∑
i=1

(x2i + y2i )

n
(27)

MRSE =

√√√√√ n∑
i=1

(x2i + y2i + z2i )

n
(28)
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Table 3. The Results of the Real-Time verification flight. The Pattern refers to the
Flight Profile as defined in Section 3.5, and the % Measurements is used to show the
percentage of measurements obtained for the given set of flight images.

Pattern Direction Mean STD DRMS MRSE % Valid
[m] [m] [m] [m] Measurements

A
North -4.04 7.12

13.37 16.17 16.96East 5.74 9.45
Down -0.93 8.73

B
North -1.58 8.78

14.90 16.29 31.94East -3.51 11.49
Down 3.01 5.89

Even with the real-time errors present in the solution, the system preformed close

to the desired specifications with an attitude-aided solution as defined in Chapter 1.

The DRMS was 14.901m and the MRSE was 16.294m for the second flight profile.

Though these results are not within the same accuracy of the GPS used (2.5m), it is

of a similar order of magnitude while proving the capabilities of the system for near

real-time VisNav. The results presented in Table 3 show clearly the increase of nearly

double in percentage of successful measurements acquired when the flight profile was

changed to Flight Profile B, seen in Figure 24. Even with the change in flight profile,

there were still areas in which measurements were not possible. Figure 28 shows both

flight profiles in the AOI, with the locations of valid measurements shown in red.
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Figure 28. Flight Test 3 telemetry for both Pattern A and B is shown by black dots
for each image saved. The red dots are the calculated locations for which a PnP
measurement was possible.

The algorithms and feature database were further modified to improve the accu-

racy of the solution. Tests were conducted on the images and flight data from Flight

Test 3, creating simulated flight tests. From these tests it was assumed that if the

system were to fly in the altered configurations, the real-time performance would be

the same or very near the same as the simulated results. These post-processing al-

gorithm refinements will simply be referred to as either post-processing refinements

or just refinements for the remainder of this thesis. These refinements will consist of
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tests run using the entire Flight Test 3 data including the telemetry and images, not

just the data specific to one flight profile or another.

4.3 Time Break-down

For determining the measurement rate of the SUAS, a time breakdown of the

calculation must be conducted. The time considered for this breakdown is the time

it takes from the image acquisition command from the NUC to the time a final pose

solution is calculated. This breakdown will consist of analyzing the image acquisition

process, the data transfer within the system, the OpenCV position solution calcula-

tion and the attitude constrained position solution. As stated in Ch 1, the desired

measurement rate is approximately 1Hz or faster. A slower rate is acceptable as long

as the system still calculates the VisNav solution in real-time. The time required to

present and save of data was not considered in this analysis, because these tasks are

dependent upon the user’s preference, and times to accomplish these can very greatly

upon the amount of data desired to be saved or displayed to a screen.

For image acquisition, as covered in Chapter 3, a Python wrapper is used to

communicate between the NUC and the Prosilica. With this came many issues dealing

with timing and integration of the system. Vimba, the SDK supplied by Allied Vision

Technologies for controlling the Prosilica cameras is capable of more than 30 fps,

dependent on the exposure time used, but recreating this rate of acquisition using

Pymba was not possible. Table 4 below shows the time break-down of the VisNav

system for ideal operations regarding exposure settings and background processes

running.
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Table 4. Time breakdown of system solution from Image Acquisition to final position
solution for optimum settings.

Sequence Time [s]

Image Acquisition 0.3718

Color/Format Conversion 0.0500

Read Telemetry 0.0001

Image Matching 0.0527

OpenCV PnP RANSAC Calculation 0.0837

Attitude-Aided PnP Calculation 0.1054

Total 0.6637

Using ideal times for each of these categories, a total pose calculation time was

analyzed to determine if the system performed at the desired measurement rate. For

the optimum times, the VisNav solutions were calcualted faster than 1Hz, but during

Flight Test 3 however, the solutions were calculated closer to 0.45Hz. From Table 4,

it can be seen that the greatest contribution to the calculation time was the Image

Acquisition process. Improvements to this process, as well as the other processes, will

be discussed in Section 5.2.

4.4 Error Analysis

The primary method for improving the solution is to characterize the errors from

the position solution, and determine methods for improving the system to reduce

these errors. For this section, there are two types of errors addressed: known errors,

and calculated errors. Known errors are ones that may require calculation, but are

constant throughout the flights and can be determined before flight. Calculated errors

are those that can be accounted for during or after flight, but overall are more difficult

to determine and account for beforehand.
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For many error parameters, residuals will be discussed as a metric for the improve-

ment of the system. For this research residuals are defined as the difference between

predicted and actual feature locations in the image, as previously detailed in Section

2.3. These are calculated using the GPS truth and autopilot attitude at the time of

the given image. The primary metric for gauging improvement of the system for each

test was the final horizontal position error DRMS of each simulated Flight Test.

Known Errors.

The primary known errors considered are those from the intrinsic and extrinsic

camera calibration, and the known characteristics of the GPS system used as the

truth position. The majority of these, as mentioned above, can be calculated before

flight and are held constant for the duration of the tests. For many of these errors,

a true, accurate value cannot be determined due to limitations of the known area of

interest. Instead approximations are used, where actual values cannot be determined.

For camera calibration, the intrinsic parameters, such as the K matrix and distor-

tion parameters, were calculated using methods and scripts described in [43]. With

the refinement process of intrinsically calibrating the camera, a pixel error is used as

the metric for determining the most accurate parameters possible. The pixel error

from the intrinsic camera calibration introduces only minor errors, and as such is con-

sidered negligible for this thesis. Extrinsic calibration, while introducing some errors,

is used to reduce the errors that arise from an improper camera frame to body frame

rotation matrix. This calibration must usually take place while in flight or during

post-processing. Figure 29 shows the relationship of the camera frame to the body

frame of the aircraft, separated to show greater clarity.
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Figure 29. The ideal placement of the digital camera with respect to the COTS UAV
autopilot. The autopilot frame is oriented with xac pointed out the nose of the UAV,
yac pointed out the right wing of the UAV, and zac pointed directly down from the
fuselage. The two frames ideally share the zac.

An initial guess was used for the DCM to calculate the residuals and position

solutions, assuming the camera was positioned exactly as depicted in Figure 29. The

measured location of the object in the image frame was compared to the calculated

location in the image frame, and the residual between these two locations was calcu-

lated. Small corrections to roll, pitch, and yaw were then applied until a minimum

residual was found. These adjustments were applied to the initial guess to develop a

final, roughly calibrated DCM. Though this solution is not perfect, it is the closest

approximation available with the given resources.

Calculated Errors.

Of the many calculated errors that can contribute to the total position error

of the solution, only one will be considered in detail in this thesis. The primary

calculated error is the attitude error from the autopilot at the time the image was

acquired. These errors are unique to the stage of flight and conditions the autopilot

are experiencing. The calculation of this error was done in the same manner as the

extrinsic camera calibration, with varying the adjusted roll, pitch, and yaw angles

to reduce the residuals and the DRMS error of the attitude-aided solution. After

this test was done, the resulting angle rotations were used again in post-processing
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the real-time data. Figures 30 and 31 show the DRMS error calculations for each

refinement post-process test. Figure 30 shows the corrected roll and pitch angles in

degrees for the full range of [−5.0 : 2.0], and Figure 31 shows the corrected angles

focusing on the lower end of the range.

Figure 30. Simulated flight tests were conducted with augmentations to the attitude,
within the range of [−5.0 : 2.0] degrees for roll and pitch was from [−2.5 : 2.0] degrees.
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Figure 31. Simulated flight tests were conducted with augmentations to the attitude,
within the range of [−3.0 : −1.8] degrees for roll and [−1.7 : −1.4] for pitch.

From the corrected angle analysis, it was determined that in these tests, for a

corrected roll angle of approximately -2.5 degrees, the DRMS error was significantly

decreased. For the corrected pitch angle, however, it was noticed that for negative

angles the DRMS values were roughly the same with only minor differences. The sec-

ond corrected attitude test was used to analyze the roll angles around -2.5 degrees to

determine the minimum error in the range accurate to 0.1 degrees. The lowest DRMS

error was noted with corrected roll and pitch angles [−2.6,−1.6] with a DRMS of 8.22

meters. Similar analysis was done with the Flight Test 2 data and the optimum aug-

mented attitude was [−2.0,−1.4], showing a consistent attitude error in the system.

This attitude correction aims to correct for errors in the calculated attitude from the

autopilot, errors induced from the timing error between the telemetry and the image
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acquisition, as well as errors from the extrinsic camera calibration. Since none of

these errors can be individually characterized, they are all lumped together as the

attitude error of the system. The corrected attitude from Flight Test 3 will be used

when performing further post-processing refinement tests for all other results in this

chapter.

4.5 Database Variants

Another intended improvement to the system to increase accuracy and sampling

time was to develop variants of the feature database used for 2D to 3D correspondence.

This section of the chapter will include an analysis of the database used for real-time

flight, as well as variations of the same GeoTiff image to improve performance of

the system. A second GeoTiff was created using entirely open-source images and

geographic information, and from this GeoTiff a new feature database was created.

All of these database variants were used in post-process refinement tests of the real-

time position calculation to compare overall performance.

Database Parameter Adjustment.

Figure 32 is the image used for the database, detailing the positions of the database

features in the image plane. It was noticed that the features are primarily located on

trees and other areas that are of no interest when performing matching.
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Figure 32. The database image with the SIFT features overlayed in blue used for all
Flight Tests. This is referred to as the default Database.

Features that were located in trees were considered unusable, since the foliage is

never guaranteed to be in the same location from one image to the next, and as such

the features are not guaranteed to be located in the same area of the foliage. Since

the majority of features were unusable for image matching, and as such unusable for

position calculation, parameters were adjusted for database variants to either move

these parameters to more repeatable locations and/or to find more features useful for

matching and localization. The primary method of variation for databases was to

adjust the SIFT parameters used in the feature extraction. The parameters used in

developing the SIFT feature extraction algorithm are given below with the affect of

each on the number and/or quality of features in the system.

• Contrast Threshold: filters out weak features in semi-uniform (low-contrast)

areas

• Edge Threshold: filters out edge-like features

• Number of Features: number of “best” features retained, scored by local

contrast
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• Number of Octave Layers: number of layers considered in SIFT

• Sigma: the sigma of the Gaussian blurring applied to the input image at the

zero Octave

For the parameters listed above, the numbers of features and number of octaves

were kept constant, and the thresholds and sigma were altered and the feature re-

sponses in the altered databases recorded and applied to simulated test runs. In

order to gauge how varying each parameter effects the database, tests were run for an

increase and decrease of each parameter. For each test the total number of features,

the number of features located in the wooded regions, and the number of features

in the specific flight test area of interest were recorded for analysis. Included with

the data is the percentage of useful features. These are features that are not located

in the wooded regions, and thus are useful for the image-aided navigation solution.

Table 5 below shows these tests as well as the results generated. Figures showing

each database variant with feature locations can be found in Appendix D.

Table 5. Analysis of Database Variants for Contrast Threshold, Edge Threshold, and
Sigma deviations.

Contrast Edge Sigma Wooded AOI Total % Useful
Threshold Threshold Features Features Features

0.02 10 1.6 437443 16471 624535 29.957
0.03 10 1.6 304677 8793 386591 21.188
0.04 10 1.6 178629 5312 220361 18.938
0.08 10 1.6 3736 1038 6677 44.047
0.04 5 1.6 165673 4239 200680 17.444
0.04 15 1.6 180784 5805 225301 19759
0.04 10 0.8 384452 12597 474490 18.976
0.04 10 2 103724 3122 127226 18.473

As can be seen from the database tests, reducing the contrast threshold creates

more features overall, including in the trees, but it also allows for more features

in the uniform regions such as the field West of Himsel airfield. This created the
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most features in the specific region of the flight tests while also increasing the overall

percentage of features not located in the trees. Figure 33 shows the definition of the

flight test region of interest as well as the specific areas considered to be wooded.

Lowering the initial sigma parameter also increased the number of features in the

flight test region, while keeping the percentage of useful features relatively constant.

Variation to the edge threshold did not vary solutions or performance enough to

constitute a definitive improvement to the system, and as such these database variants

were not considered further.

Figure 33. The areas considered “wooded” are outlined white rectangles. Features
located in these regions were not useable for VisNav calculations. The area of interest
shown in blue is the area in which the Flight Tests occurred.

The databases for the reduced contrast and reduced sigma were used in post-

process refinement tests, and the behavior of these compared to the behavior of the

results from the corrected attitude flight data shown in the previous section of this

thesis. The comparison of these tests are given in Table 6, detailing how each database

variant performed in the refinement tests.
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Table 6. Refinement Flight Test results for Database Variants of reduced Contrast
Threshold and reduced Sigma values.

Database Variant Measurements DRMS MRSE % Valid Measurements

Base DB 184 8.219 10.184 27.422

Contrast = 0.02 291 9.818 13.140 43.815

Contrast = 0.03 243 9.480 11.368 36.214

Sigma = 0.8 167 10.870 13.977 24.888

From these tests, it was determined that for accuracy the original database with

attitude correction performs the best with a DRMS of 8.219 meters, but for obtain-

ing the most measurements the lower contrast threshold database is preferred. The

lowest Contrast Threshold of 0.02 produced solutions almost twice as often as the

baseline case while increasing the DRMS by only 1.2 meters, and using a threshold

of 0.03 increased the percentage by approximately 10 while increasing the error by

only 1 meter. Though lowering the contrast threshold increased the rate at which

measurements were obtained, the goal is to find the most accurate system, and as

such the base SIFT parameters will be used for the remainder of this research. It was

also found that for the refinement tests that the default SIFT parameters generated

the most accurate results as well as a higher percentage of measurements when used

to analyze the flight imagery. The default SIFT parameters were used in the creation

of the GoogleMaps feature database due to accuracy of the refinements when using

the default database.

OSS Imagery.

A GoogleMaps [49] database image is shown below in Figure 34 with the features

overlayed on the image. The image was obtained from Google Maps, and was only

a fraction of the resolution of the DigitalGlobe database image, being (5600x3944)
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pixels as compared to (12098x5398) pixels. The Geospatial Data Abstraction Library

(GDAL) [61] was used to apply the geospatial information to the image file, creating

the GeoTiff used for this feature database.

Figure 34. The GoogleMaps image used in generating the second feature database. It
should be noted that the high resolution orthophoto obtained still retained the labels
applied by Google in the image.

From analyzing the database variants, it was determined that the base SIFT

parameters created the database capable of the most accurate PnP solution, and

as such these parameters were used in the creation of the GoogleMaps database.

This database was then used in refinement flight tests to determine the accuracy

possible using such a database. Like the other database variants, the features of

the GoogleMaps database were analyzed and their locations used to determine the

number of useful features for VisNav solutions. Of the total 92350 features detected

in the image, 4163 were located in the AOI, and a total of 36% were located in non-
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wooded regions. These results can be compared to the other variants from Table 5,

and seen that this variant has only 1000 fewer features located in the AOI, but double

the amount of useful features overall than the database used for the Flight Tests. The

size of this database was also much smaller, being only 18.8MB of data as opposed to

the 44.8MB database used during the Flight Tests. The real-time results from Flight

Test 3 are shown below to compare the results from the attitude-corrected solution

using the DigitalGlobe database as well as the attitude-corrected solution using this

database.

Table 7. Refinement Flight Test results for Database Variants of reduced Contrast
Threshold and reduced Sigma values.

Database Attitude- 6DOF 3DOF % Valid
Correction DRMS [m] DRMS [m] Measurements

DigitalGlobe Uncorrected 58.84 14.53 23.70
(Real-Time Flight)

DigitalGlobe Corrected 64.71 8.22 27.42
GoogleMaps Corrected 38.47 9.22 48.73

By analyzing the results from the database variants, it was determined that the

most accurate database method for future real-time vision-aided navigation research

was in fact the original database structure with attitude correction applied. The

database variants were compared using several metrics, but the optimum variant was

determined by minimizing the DRMS error of the attitude-aided 3DOF PnP solution.

Secondary consideration was given to maximizing the percentage of features located

on non-wooded regions of the database image. The original database was used for the

remaining refinement tests of this thesis. The ideal database would produce both the

most accurate solutions and the highest number of measurements per flight image set,

however no single database met these requirements, and as such the most accurate

database was determined to be the best.
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4.6 Parameter Adjustment

Once the optimum database variant was determined, additional parameter adjust-

ments were tested to further improve the performance of the navigation solution. The

primary modification for improvements was adjusting the aerial ground pixel density

(GPD). For the GPD adjustments, the aerial images were down-sampled to GPD

similar to the database image. With both images being the same or nearly the same

GPD, the features found with SIFT should ideally be the same scale in both images,

potentially making matching easier. Figure 35 shows a sample of the down-sampled

images. The down-sampling process was conducted using the OpenCV image pyramid

to halve the resolution of the image until it nearly matched the GPD of the database.

The DigitalGlobe database GPD was 12.72 pixels/m2, and the GoogleMaps database

GPD was 1.69 pixels/m2. Table 8 details the change in resolution and GPD of the

flight imagery for each step in the image pyramid.

Table 8. Ground Pixel Density Analysis for Steps in the Image Pyramid for Flight Test
Imagery at an Altitude of 250 meters

Steps Resolution [pixels] GPD [pixels /m2]
0 1600x1200 94.34
1 800x600 24.31
2 400x300 6.16
3 200x150 1.48
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Figure 35. Image A was an image acquired during the flight tests, shown at its full
resolution. Image B is the same image, but down-sampled 3 steps to be of comparable
resolution to the DigitalGlobe database image.

Since down-sampling was achieved by use of image pyramids, algorithm refinement

tests were run for each step in the pyramid until the resolution was comparable to

the database image. For each step, the position error was characterized as well as the

percentage of valid measurement recorded to determine if down-sampling improved

the performance of the system in any significant manner. Table 9 details the numerical

findings under the down-sampling adjustments for the database used for the Flight

Tests. For comparison, the same pyramid steps were tested on refinement test runs

with the GoogleMaps database.

Table 9. Results from refinement flight tests with various steps of down-sampling
applied to the flight imagery. This test was run using the base database from the
Flight Tests.

Steps DRMS MRSE % Valid Measurements
0 8.219 10.184 26.528
1 8.457 10.101 25.037
2 9.189 13.394 26.677
3 8.862 10.207 25.037
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Table 10. Results from refinement flight tests with various steps of down-sampling
applied to the flight imagery. This test was run using the GoogleMaps database for
comparison.

Steps DRMS MRSE % Valid Measurements
0 9.216 10.598 48.286
1 9.769 13.535 49.031
2 8.908 10.105 48.584
3 8.716 9.818 47.392

Comparing Tables 9 and 10, it can be seen that down-samping did not greatly

change the accuracy of the system for either database, nor did the percentage of mea-

surements change drastically. For the base database tests all down-sampling steps

slightly decreased, and the percentage of valid measurements also stayed nearly con-

sistent with no significant improvements. For this database, there was no exact match

of GPD using this down-sampling method, as the exact match would be between the

first and second steps. No significant improvement was seen for the DigitalGlobe

database. For the GoogleMaps database, three steps of down-sampling proved to

produce the most accurate results for this database, but the improvement was not

significant enough considered to be substantial.

From the down-sampling analysis, it was determined that down-sampling did not

in fact greatly impact the results. The greatest improvement seen was the 0.5 meter

DRMS from matching the GPD of the flight imagery to the GPD of the GoogleMaps

database. For both databases, there were no significant changes to the percentage

of valid measurement based on changing the GPD. This leads to the conclusion that

the high resolution imagery obtained during flight was much higher resolution than

necessary. Acquiring smaller resolution imagery, as considered in Section 5.3, would

hypothetically lead to faster image acquisition and thus a greater rate at which mea-

surements can be taken. Smaller image resolutions would also relate to faster image

matching operations, but as shown in Table 4, the matching process took very little
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time compared to the time required for image acquisition. Overall, image resolution

matching database GPD appeared to produce slightly more accurate solutions, but

the results were too miniscule to be considered a definitive improvement.

4.7 Chapter Summary

The results from the implementation flight tests were successful, obtaining real-

time results with a position DRMS error of only 14.53 meters. After post-processing

the data performing algorithm refinement tests, a position DRMS error of 8.22 meters

was achieved. The subsequent chapter will provide final conclusions, as well as suggest

future work to conduct on this platform for furthering the research.
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V. Conclusions and Future Work

5.1 Conclusions

Vision-aided navigation is only possible due to the advancements in digital imaging

in recent decades, allowing for high resolution imagery to be acquired at sufficient

frequency and quality to be analyzed and used for navigation algorithms. The VisNav

algorithm used for this thesis was the Perspective n Point algorithm, allowing absolute

position solutions to be produced independent of previous measurements. In order to

use the PnP algorithm, a feature database was constructed of orthorectified satellite

and aerial imagery used to relate the 2D features located in the flight imagery to the

3D world feature location stored in the database. The database and algorithms were

integrated into a COTS SUAS, and flown over Camp Atterbury, IN over a sequence

of flight tests in Fall 2015.

The first Flight Test was focused on verifying the capabilities of the 12-ft wingspan

ARF Telemaster during autonomous flight. The second test was to acquire flight

imagery of the area of operations and test the integration of the image acquisition

components with the airframe. During the third Flight Test, the system was proven

to be capable of providing a real-time VisNav solution for a COTS SUAS. Analysis

of the Flight Test 3 data showed that the system was capable of obtaining a solution

roughly 32% of the time while flying a pattern over an urban environment with many

buildings and other descriptive features observable. During this flight, the position

of the SUAV was calculated with a DRMS error of 14.53 meters. This was accurate

enough for verification of the real-time system, but a more accurate system was

desired. In order to obtain this solution several alterations and improvements were

conducted for the system.

The primary alterations to the system were correction for the attitude error, im-
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provements to the database, and applying down-sampling to the flight images to make

them comparable GPD to the database imagery. The attitude analysis found that

the attitude error was approximately -2.6 degrees for roll and -1.6 degrees for pitch,

and applying this correction increased the position accuracy of the system to 8.22

DRMS. Using a GoogleMaps image for the database doubled the percentage of valid

measurements, but did not significantly improve the position accuracy of the sys-

tem. After a final attitude correction and database were determined, down-sampling

was applied in an attempt to further improve the system, but it was found to have

no significant effect on either the accuracy or the percentage of valid measurements.

This implies that using a lower resolution camera would not have reduced positioning

performance, but could potentially increase the frame rate of the system by reducing

the data transfer and image processing requirements.

The system proved to be capable of performing real-time absolute position calcula-

tions for a small unmanned aerial vehicle. The post-processing algorithm refinements

improved the performance, allowing for a VisNav 3DOF position calculation with a

DRMS of less than 10 meters. This research will lead to more reliable navigation

for both piloted aircraft and UAVs in outdoor GPS-denied environments, providing

a clear advantage in the NavWar realm even for small UAVs.

5.2 Future Work

As with most experimental research, there were many limitations to the tests that

could be performed and as such limitations to the data gathered. The primary lim-

itations were those involving the necessity of GPS for take-off, landing, and other

crucial flight regimes. The autopilot, though capable of using an alternative naviga-

tion solution, such as the vision-aided solution presented in this thesis, utilized GPS

for the flight tests for safety requirements, and as such the attitude outputs from the
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autopilot were in fact partially based on the GPS. Even if a vision-aided solution

were to be used instead, this is only possible at cruise altitudes. If the system had

consisted of a full closed-loop to the autopilot, the attitude outputs would be based

on the VisNav solution rather than GPS. The GPS was also required for initialization

of any filters or tile estimation processes. The primary limitation to the sample rate

is that of the camera interface. The python wrapper, Pymba, allowed for interaction

with most of the camera parameters, but it greatly limited the rate at which a single

image could be acquired. Measurements were then limited in number and frequency

due to this interface.

Over the course of this research, several improvements were considered, but these

were beyond the scope of this thesis. These are listed in the sections below.

Filtering and Smoothing.

The primary method proposed for improving the system is the implementation

of a filter. The specific filter planned for this system was the EKF, as mentioned in

Chapter 2. This implementation would not only potentially increase the accuracy

of the system, but will provide position updates at the desired rate required for

connecting to the UAV autopilot. Also with an EKF, there is a propagation of the

navigation solution, and as such an estimated location can be calculated and used to

find the proper tile for searching the feature database. Having this filter will limit

the number of tiles required to be loaded into local memory at any given time.

Onboard Processor.

The second area of improvements involves the onboard processor— either increas-

ing computation power or decreasing size. For use on SUAS, it is desired to reduce

the size of the processor. One method for this would be to switch to a processor of
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similar computation power and smaller size. Typically, reducing the size of the pro-

cessor or on-board computer directly relates to reducing the size of data allowed for

the system, so the GoogleMaps database is recommended to be used for this system,

as the database was proven capable of nearly the same accuracy while being less than

half the size of the original database.

Another suggestion for future work is to incorporate additional or alternate sen-

sors, such as laser ranging equipment to guarantee accurate altitude measurements.

From the analysis two primary issues were discovered with the Prosilica digital cam-

era chosen for this research. The first being the difficult interface, limiting the rate of

image acquisition. The issue revolved around the image resolution being much higher

than necessary. These two issues combined led to the image acquisition process itself

taking over half of the total time of the VisNav solution. A camera with a global

shutter and adjustable parameters is required, but there are many cameras avail-

able on the market that meet these requirements while still having better interface

programming.

Another simple alteration would be to consider different feature detection meth-

ods, such as SURF, FAST, FREAK, or CENSURE[4]. SURF was discussed in Chap-

ter 2, and like the others suggested is boasted to perform faster than SIFT [28]. This

would allow for faster measurement rate, allowing a faster real-time solution.
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Appendix . Appendix

A Appendix A: Image Acquisition Test Script

1 #Scr i p t to Test time o f image capture
2

3 from pymba import ∗
4 import time
5 import cv2
6 import numpy as np
7 import matp lo t l i b . pyplot as p l t
8 import datet ime
9

10 #s t a r t Vimba
11 with Vimba ( ) as vimba :
12 #get system ob j e c t
13 system = vimba . getSystem ( )
14

15 #l i s t a v a i l a b l e cameras ( a f t e r enab l ing d i s cove ry f o r GigE cameras )
16 i f system . GeVTLIsPresent :
17 system . runFeatureCommand ( ”GeVDiscoveryAllOnce” )
18

19 cameraIds = vimba . getCameraIds ( ) #Obtains the ID f o r connected
cameras , a l l ow ing cho i c e o f s p e c i f i c camera

20 #get and open a s p e c i f i c camera
21 camera0 = vimba . getCamera ( cameraIds [ 0 ] )
22 camera0 . openCamera ( )
23

24 #se t the value o f a f e a tu r e
25 camera0 . Acquis it ionMode = ’ SingleFrame ’ #Sets the camera to only

acqu i r e a s i n g l e frame at a time
26

27 #crea t e new frames f o r the camera
28 frame0 = camera0 . getFrame ( ) #c r e a t e s a frame
29 frame1 = camera0 . getFrame ( ) #c r e a t e s a second frame
30

31 #announce frame
32 frame0 . announceFrame ( )
33

34 #capture a camera image
35 camera0 . s tartCapture ( )
36 frame0 . queueFrameCapture ( )
37 camera0 . runFeatureCommand ( ’ Acqu i s i t i onS ta r t ’ )
38 camera0 . runFeatureCommand ( ’ Acqu i s i t i onStop ’ )
39

40 frame0 . waitFrameCapture ( ) #F i n a l i z e s the Capture Process
41

42 dtime = time . s t r f t ime ( ”h%Hm%Ms%S” ) #Timing used in sav ing the image
43

44 #get image data . . .
45 imgData = frame0 . getBufferByteData ( ) #Not u t i l i z e d f o r t h i s t h e s i s
46
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47 ##. . . or use NumPy f o r f a s t image d i sp l ay
48 moreUsefullImgData = np . ndarray ( bu f f e r = frame0 . getBufferByteData ( ) ,
49 dtype = np . uint8 ,
50 shape = ( frame0 . height ,
51 frame0 . width ,
52 1) ) #pr e f e r r e d method ,

a l l ow ing image p ro c e s s i ng in OpenCV
53

54 #clean up a f t e r capture
55 camera0 . endCapture ( )
56 camera0 . revokeAllFrames ( )
57

58 #c l o s e camera
59 imgRGB = cv2 . cvtColor ( moreUsefullImgData , cv2 .COLORBAYERGR2BGR) #

Convert from BayerGR8 format to BGR
60

61 img = cv2 . cvtColor (imgRGB, cv2 .COLORRGB2GRAY) #Convert from BGR to
Graysca le

62

63 # Show Image i f d e s i r ed
64 # pl t . imshow ( img , cmap = ’ gray ’ )
65 # pl t . show ( )
66

67 fname = ’ /Image Test %s . png ’ %( s t r ( dtime ) )
68 cv2 . imwrite ( ’ . / ImagesCaptured ’ +fname , img ) #Saves image in

des ignated d i r e c t o r y
69 pr in t fname
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B Appendix B: Telemetry Read Test Script

1 from droneapi . l i b import VehicleMode
2 from droneapi . l i b import Command
3 from droneapi . l i b import mavuti l
4 from numpy import matrix
5 import numpy as np
6 import math
7 import time
8 from datet ime import datet ime
9

10 pr in t ”This i s a r e a l l y s i l l l y t e s t \n”
11 # Get a l o c a l APIConnection to the au t op i l o t ( from companion computer or

GCS) .
12 api = l o c a l c onn e c t ( )
13

14 # Create v eh i c l e ob j e c t s f o r each v eh i c l e from the APIConnection
15 v s t u f f = api . g e t v e h i c l e s ( ) [ 0 ]
16 pr in t ”Veh ic l e Object Created \n”
17

18

19 #pr in t read te l emetry and pr in t r o l l , p itch , and yaw from the au t op i l o t
every second f o r 10 seconds

20 cnt = 0
21 whi le cnt <= 9 :
22 t ry :
23 yaw = v s t u f f . a t t i t ud e . yaw #heading from north (6

bytes CHECK)
24 r o l l = v s t u f f . a t t i t ud e . r o l l
25 p i t ch = v s t u f f . a t t i t ud e . p i t ch
26 pr in t ”Telem : %s , %s , %s \n” %( s t r ( r o l l ) , s t r ( p i t ch ) , s t r (yaw) )
27 pr in t ”Count = ” , cnt
28 time . s l e e p (1 )
29 cnt += 1
30

31 except KeyboardInterrupt :
32 break ;
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C Appendix C: Image Acquisition with Telemetry Read Flight Test Script

1 from pymba import ∗
2 import time
3 import cv2
4 import numpy as np
5 import matp lo t l i b . pyplot as p l t
6 import time
7

8 from droneapi . l i b import VehicleMode
9 from droneapi . l i b import Command

10 from droneapi . l i b import mavuti l
11 import math
12 import datet ime
13

14 de f ImageCapture (Fltnum , Imgnum , v s t u f f ) :
15 ’ ’ ’ Image Capture func t i on used f o r F l i gh t Test Operat ions . This

func t i on u t i l i z e s the Pymba wrapper f o r connect ing to an AVT
P r o s i l i c a Camera and the droneapi s c r i p t s from MavProxy in order to
connect to an au t op i l o t .

16 Inputs :
17 Fltnum : The number used f o r s p e c i f y i n g one F l i gh t Object ive . Used

f o r o rgan i z i ng images
18 Imgnum : The s p e c i f i c number as s i gned to the acqu i red image . Used

f o r o rgan i z i ng images
19 v s t u f f : The mavproxy/ droneapi v e h i c l e ob j e c t
20

21 Outputs :
22 img : Greysca le image acqu i red
23 pva : GPS po s i t i o n and a t t i t ud e data from the time the image was

aquired
24 ’ ’ ’
25

26 #s t a r t Vimba
27 with Vimba ( ) as vimba :
28 #get system ob j e c t
29 system = vimba . getSystem ( )
30

31 #l i s t a v a i l a b l e cameras ( a f t e r enab l ing d i s cove ry f o r GigE
cameras )

32 i f system . GeVTLIsPresent :
33 system . runFeatureCommand ( ”GeVDiscoveryAllOnce” )
34 cameraIds = vimba . getCameraIds ( ) #Obtains the ID f o r connected

cameras , a l l ow ing cho i c e o f s p e c i f i c camera
35

36 #get and open a camera
37 camera0 = vimba . getCamera ( cameraIds [ 0 ] )
38 camera0 . openCamera ( )
39

40

41 #se t the value o f a f e a t u r e
42 camera0 . Acquis it ionMode = ’ SingleFrame ’ #Sets the camera to only
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acqu i r e a s i n g l e frame at a time
43

44 #crea t e new frames f o r the camera
45 frame0 = camera0 . getFrame ( ) #c r e a t e s a frame
46 frame1 = camera0 . getFrame ( ) #c r e a t e s a second frame
47

48 #announce frame
49 frame0 . announceFrame ( )
50

51 #capture a camera image
52 camera0 . s tartCapture ( )
53 frame0 . queueFrameCapture ( )
54 camera0 . runFeatureCommand ( ’ Acqu i s i t i onS ta r t ’ )
55

56 camera0 . runFeatureCommand ( ’ Acqu i s i t i onStop ’ )
57 dtime = time . s t r f t ime ( ”h%Hm%Ms%S” )
58

59 #Telemetry read immediately a f t e r Acqu i s i t i onStop to reduce time
between telem and image a c qu i s i t i o n

60 imgtime = datet ime . datet ime . now( )
61 #Getting Att i tude In f o
62 yaw = v s t u f f . a t t i t ud e . yaw #heading from north (6 bytes

CHECK)
63 r o l l = v s t u f f . a t t i t ud e . r o l l
64 p i t ch = v s t u f f . a t t i t ud e . p i t ch
65

66 #Get Pos i t i on Data
67 l a t=s t r ( v s t u f f . l o c a t i o n . l a t ) #l a t i t u d e (9 bytes CHECK)
68 l on=s t r ( v s t u f f . l o c a t i o n . lon ) #long i tude (9 bytes CHECK

)
69 a l t a s l = s t r ( v s t u f f . l o c a t i o n . a l t ) #a l t i t u d e above sea l e v e l

(6 bytes CHECK)
70 pva = np . array ( [ ( imgtime ) , Imgnum , la t , lon , a l t a s l , r o l l ,

p itch , yaw , ( dtime ) ] )
71

72 frame0 . waitFrameCapture ( ) #F i n a l i z e s the Capture Process
73

74 #get image data . . .
75 imgData = frame0 . getBufferByteData ( ) #Not u t i l i z e d f o r t h i s

t h e s i s
76

77 ##. . . or use NumPy f o r f a s t image d i sp l ay
78 moreUsefullImgData = np . ndarray ( bu f f e r = frame0 .

getBufferByteData ( ) ,
79 dtype = np . uint8 ,
80 shape = ( frame0 . height ,
81 frame0 . width ,
82 1) ) #pr e f e r r e d method ,

a l l ow ing image p ro c e s s i ng in OpenCV
83

84 #clean up a f t e r capture
85 camera0 . endCapture ( )

94



86 camera0 . revokeAllFrames ( )
87 #convert image to Graysca le
88 imgRGB = cv2 . cvtColor ( moreUsefullImgData , cv2 .COLORBAYERGR2BGR

)
89 img = cv2 . cvtColor (imgRGB, cv2 .COLORRGB2GRAY)
90

91 #Save Image
92 fname = ’ / Flt%03d Set t%03d Img%03d Time %s . png ’ %(Fltnum , Setnum

, Imgnum , s t r ( dtime ) )
93 cv2 . imwrite ( ’ . / ImagesCaptured ’ +fname , img )
94 re turn img , pva
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D Appendix D: Database Variants with Feature Locations

The database variants discussed in Chapter 4 are shown below. The SIFT feature
locations are shown in blue for each image as a qualitative analysis of the usefulness
of database for VisNav solutions.

Figure 36. The database variant for the Contrast Threshold set at 0.02 instead of the
base of 0.04. Feature locations are shown in blue.

Figure 37. The database variant for the Contrast Threshold set at 0.03 instead of the
base of 0.04. Feature locations are shown in blue.

96



Figure 38. The database variant for the Edge Threshold set at 5 instead of the base of
10. Feature locations are shown in blue.

Figure 39. The database variant for the Sigma Parameter set at 0.8 instead of the base
of 1.6. Feature locations are shown in blue.
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Figure 40. The database variant for the Contrast Threshold set at 0.08 instead of the
base of 0.04. Feature locations are shown in blue.

Figure 41. The database variant for the Edge Threshold set at 15 instead of the base
of 10. Feature locations are shown in blue.
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Figure 42. The database variant for the Contrast Threshold set at 0.02 instead of the
base of 0.04. Feature locations are shown in blue.
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E Appendix E: Pre-Flight Checklist with Calibration Processes

This Appendix provides a basic overview of the pre-flight process used for vision-
aided navigation flight tests conducted at AFIT. The individual steps can vary for
specific platforms, but the overall process should remain the same. For clarification,
there are two seperate components considered for pre-flight: the payload (including
camera, onboard computer, and associated groundstation) and the UAV (the specific
airframe, autopilot, and associated groundstation). Steps will be laid out for each
component in the process.

Table 11. UAV Airframe Setup

1. Assemble UAV Install wings and make all wiring connections. In-
stall propeller. Do not connect batteries or fuel
yet

2. Inspect UAV Check props and hub for damage for fatigue, In-
spect servo arms and flight control surfaces for
damage. Tighten assembly as needed. Ensure
pitot connection are made. Check Center of Grav-
ity (CG) location.

3. Install Fully Charged Batteries Connect battery cable.
(for ignition and payload) Adjust batteries and/or weight/ballast position as

necessary to ensure proper placement of CG.
Ensure batteries are properly secured.

4. Fill with appropriate amount of
gas

Support contractor is responsible for all storing,
pumping and handling of SUAS fuel.
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Table 12. Payload Initial Setup

1. Verify onboard Computer Oper-
ations

Connect NUC to ground station power. Connect
monitor. Turn on NUC and Bluetooth mouse and
keyboard. Ensure system powers up correctly and
OS is responding as expected. Double check nec-
essary scripts are loaded into the correct direc-
tories. Plug NUC to GCS2 Ethernet and ensure
successful Remote Desktop operations.
Power off NUC and Bluetooth mouse and key-
board. Unplug monitor from NUC. Unplug NUC
from Ground station power.

2. Assemble Payload Install pre-flight payload batteries in box. Con-
nect Payload Pixhawk connection (if using sepa-
rate Pixhawk for payload recording). Do not con-
nect batteries yet.

3. Inspect Payload Check all connection of component cables and fas-
teners. Tighten assembly as needed. Remove lens
cap on Prosilica camera.

4. Install Fully Charged Battery Connect battery cable. Start pre-flight battery
timers.
Ensure batteries are properly secured.

INTRINSIC CAMERA CALIBRATION
Intrinsic camera calibration can be conducted at this point of the pre-flight checklist
or prior to starting the pre-flight checklist. If conducted prior to the pre-flight, special
care must be given to the lens and camera parameters that nothing changes from the
time of calibration to the time of take off. The intrinsic camera calibration process is
given by the following link:

http://www.vision.caltech.edu/bouguetj/calib_doc/

From this site, download the MATLAB calibration toolbox. This is the GUI used
to control the scripts for the intrinsic camera calibration. Use the “Doing your own
calibration” section to generation the necessary calibration board and images of the
board. These will be used to calibrate the camera matrix and distortion parameters
used in the VisNav solution. Once calibration images are acquired, use the “First
Calibration Example - Corner extraction, calibration, additional tools”
section to perform the actual calibration process using the MATLAB calibration
toolbox. The basic steps for this are:

1. Load Images

2. Extract Corners

3. Run Calibration
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4. Analyze Error

5. Refine Solution:

• adjust winx, winy

• remove problematic images from calibration

• re-extract corners

6. Re-Calibrate

7. Repeat process until pixel error is within tolerable limits

The pixel error is the primary metric used for refinement, and it is desired to
minimize this. Repeat steps 3 through 6 until this error is determined small enough.
This criteria is based on the image size, so for a very high resolution image, an error
of a few pixels is acceptable, but for lower resolution images, lower pixel errors are
desired. From the intrinsic camera calibration, the camera matrix K and the camera
distortion parameters are calculated.

Table 13. Payload Continued Setup

1. Insert Payload box into Aircraft Secure payload box into aircraft bay. Attach Wave
Relay cable to Wave Relay node inside the aircraft
fuselage. Connect Serial USB from Pixhawk to
NUC. Ensure proper LEDs are lit on the Ethernet
switch and the USB cable.

Table 14. UAV Autopilot Setup

1. Prep Transmitter Power on transmitter and set to “manual”.
2. Level UAV Level the UAV on the leveling stand.
3. Power on Autopilot Board If no power switch is installed, you must discon-

nect then reconnect the battery. Arm the Pix-
hawk autopilot using the arming button.
Continue to keep the UAV level until autopilot
start up and initialization is complete and lev-
eling has been performed. Monitor audio tones
and LEDs to ensure nominal autopilot status is
achieved.
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Table 15. UAV Communications/ Ground Control Station Setup

1. Establish Communications Connect to autopilot using Mission Planner. Ob-
serve signal quality on flight data window – should
be greater than 95% for co-located ground sta-
tion. Perform comm. ground check as necessary
to ensure proper range performance for autopilot
comm. and RC receiver.

2. Verify flight data is being
communicated and GPS lock is
achieved

Using the flight data window on Mission Planner,
ensure flight data is being transmitted, and ob-
serve GPS status.

3. Verify Communication Link be-
tween Safety Pilot Controller and
UAV

Input full deflection to individual servos on the
controller and verify corresponding movement of
control surface on UAV. Verify proper mode
switching using RC controller.

4. Ensure Proper Gains Loaded Check to make sure the correct gains are loaded
for the UAV you are flying (observable on gain
tuning windows).

5. Load Waypoints Ensure proper waypoints are loaded and that a
rally point (return to launch location) is loaded.
RALLY POINT IS REQUIRED FOR LOST
COMMUNICATIONS SCENARIO.
While aircraft is still on leveling stand, perform
single axis accelerometer calibration using Mission
Planner.
Ensure compass use is check (Pixhawk uses digital
airspeed connection through I2C port) and cali-
brate radio as necessary. Check compass status in
HUD window.

6. Perform ground calibration Ensure airspeed sensor use is checked (Pixhawk
uses digital airspeed connection through I2C
port). Cup with hand or place empty bottle
around pitot tube (not touching pitot tube) and,
using preflight calibration command on flight data
window, zero pressure to establish ground level
in altimeter. Observe altitude and airspeed indi-
cations on HUD (both should be approximately
zero).
Tap or blow on pitot tube to ensure that it is
properly reading changes in pressure. Observe re-
sponse on HUD airspeed indicator.
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Table 16. Payload Communications/ Ground Control Station Setup

1. Establish Communications On ground station, load Wave Relay in brouser.
Ensure connection too airborne Node. Open Re-
alVNC, and connect to NUC IP address. Es-
tablish Remote Desktop operations. Connect
MAVProxy to aircraft Pixhawk.

2. Ensure Proper Scripts Loaded Check to make sure the necessary scripts are
loaded properly and ready for continuous oper-
ations. Run sample test scripts listed below.
Check images captured using build in image-
viewer and telemetry read-outs. TEST SCRIPTS:
ImgTest.py, TelemTest.py, DAQTest.py

3. Prepare Scripts Ensure interface is prepared for EXTRINSIC
CAMERA CALIBRATION and in-flight tests.

EXTRINSIC CAMERA CALIBRATION
Once the UAV autopilot is calibrated for flight, the extrinsic parameters for the
camera must be calibrated. This is done to calibrate the rotation matrix from the
camera to the body frame, as described in Section 4.4 of this thesis. The camera’s
position is estimated in an ideal situation, and then calibrated by applying roll and
pitch corrections. While the aircraft is still in the leveling stand, follow the process
described below to calibrate the extrinsic parameters for the camera.

The calibration lens cap is a lens cap with a plumb line attached to the exact
center of the cap. This is used to find the point directly below the camera in the
direction of gravity, which is the same direction used by the autopilot calibration to
determine the downward direction. The extrinsic camera calibration board, unlike
the intrinsic calibration board, consists of a simple white board with a single dark
circle in the center. This circle should be large enough to be seen in an image when
taken under the leveling stand, but small enough for the center pixel location to be
calculated in said image.
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Table 17. Extrinsic Camera Calibration Process

1. Obtain Ideal Image Origin Place the calibration lens cap onto the camera.
Place the extrinsic camera calibration board such
that the circle point in the center is directly under
the plumb line. Remove the calibration lens cap.

2. Obtain Actual Image Origin Ensure the extrinsic calibration board has not
been disturbed. Using the image acquisition test
process, acquire an image of the extrinsic calibra-
tion board.

3. Perform Extrinsic Calibration
Scripts

Run the python calibration scripts on the NUC.
These will calculate the difference between the two
image origins and use the known height of the
leveling stand and the differences in the x and y
to determine the roll and pitch correction. These
are applied to the ideal rotation matrix and the
calibrated matrix saved in the appropriate YAML
files used for the VisNav solution.
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Table 18. UAV Take Off

1. Check Control Surfaces Remove UAV from leveling stand. Safety pilot
check for full and correct deflection of all control
surfaces using RC radio.

2. Check Stabilize Mode Switch transmitter to stabilize mode.
Have assistant pitch, yaw, and roll the UAV
and ensure that the control surfaces move in the
proper direction to stabilize the UAV

3. Obtain Clearance Contact the field controller and obtain clearance
to launch the UAV.
Roll aircraft to launch point.

4. Launch Have Assistant 1 stand in front of tail/rudder to
prevent forward movement.
ENSURE ALL PERSONNEL ARE CLEAR
AND WARNED PRIOR TO ENGAGING PRO-
PELLER.
Pull ignition pin to apply power to ignition circuit.
ENSURE ASSISTANT 2 KNOWS HOW TO
KILL ENGINE WITH RC CONTROLLER. As-
sistant 2 holds Safety Pilot RC controller, while
Safety Pilot starts engine.
Immediately after engine start, safety pilot takes
control of RC controller, and checks throttle and
engine operation while Assistant 1 continues to
prevent forward motion of the aircraft.
When ready to launch, Safety Pilot ensures all test
team members are ready for launch. Once all are
ready, Assistant 1 steps away from the aircraft,
and safety pilot executes a manual take-off.
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